This work discusses tensor network embeddings, which are random matrices ($S$) with tensor network structure. These embeddings have been used to perform dimensionality reduction of tensor network structured inputs $x$ and accelerate applications such as tensor decomposition and kernel regression. Existing works have designed embeddings for inputs $x$ with specific structures, such that the computational cost for calculating $Sx$ is efficient. We provide a systematic way to design tensor network embeddings consisting of Gaussian random tensors, such that for inputs with more general tensor network structures, both the sketch size (row size of $S$) and the sketching computational cost are low. We analyze general tensor network embeddings that can be reduced to a sequence of sketching matrices. We provide a sufficient condition to quantify the accuracy of such embeddings and derive sketching asymptotic cost lower bounds using embeddings that satisfy this condition and have a sketch size lower than any input dimension. We then provide an algorithm to efficiently sketch input data using such embeddings. The sketch size of the embedding used in the algorithm has a linear dependence on the number of sketching dimensions of the input. Assuming tensor contractions are performed with classical dense matrix multiplication algorithms, this algorithm achieves asymptotic cost within a factor of $O(\sqrt{m})$ of our cost lower bound, where $m$ is the sketch size. Further, when each tensor in the input has a dimension that needs to be sketched, this algorithm yields the optimal sketching asymptotic cost. We apply our sketching analysis to inexact tensor decomposition optimization algorithms. We provide a sketching algorithm for CP decomposition that is asymptotically faster than existing work in multiple regimes, and show optimality of an existing algorithm for tensor train rounding.
翻译:本文讨论“ 电磁网络嵌入 ” 。 这些“ 电磁网络嵌入 ” 是随机的矩阵( $S$), 与“ 电磁网络结构” 结构。 这些嵌入被用于对“ 电磁网络结构” 结构进行维度的削减 $x美元, 加速应用诸如“ 电磁分解” 和“ 内核回归” 等应用程序 。 现有的工程设计了投入的嵌入 $x美元, 使计算“ 美元Sx” 的计算成本效率较低。 我们提供了一个系统设计由“ 高斯” 随机推进器组成的“ 电磁网络嵌入 ” 系统( 由高斯的随机推进器组成 ) 。 这些嵌入的“ 电动阵列结构”, 包括更普通的“ 电动阵列” 规模( $$SLS) 和绘图计算成本成本低。 我们的“ 电算”, 用于“ 电算分析的“ 电算” 的“ 电算”, 将“ 的速变压” 用于“ 电算” 的“ 电算” 成本” 的“, 的“ 的深度变压” 以“ 的“ 将电算法” 显示” 显示为“ 成本”, 以“ 的“ 的“ 的“ 的“ ” 的“ ” 的“ 的“ 的” 的” 的” 的“ 的” 的“电算法” 的” 显示为“ 的” 的” 的”, 的“电算法”, 以“ 以“ 以“ 以“ 以” 以” 以” 以” 以” 以” 以” 以” 以” 以 以” 以” 以” 以“电算法” 以“ 以“ 以” 以” 以” 以” 以“ 以” 以” 以” 以 的” 以” 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以