Existing approaches focus on using class-level features to improve semantic segmentation performance. How to characterize the relationships of intra-class pixels and inter-class pixels is the key to extract the discriminative representative class-level features. In this paper, we introduce for the first time to describe intra-class variations by multiple distributions. Then, multiple distributions representation learning(\textbf{MDRL}) is proposed to augment the pixel representations for semantic segmentation. Meanwhile, we design a class multiple distributions consistency strategy to construct discriminative multiple distribution representations of embedded pixels. Moreover, we put forward a multiple distribution semantic aggregation module to aggregate multiple distributions of the corresponding class to enhance pixel semantic information. Our approach can be seamlessly integrated into popular segmentation frameworks FCN/PSPNet/CCNet and achieve 5.61\%/1.75\%/0.75\% mIoU improvements on ADE20K. Extensive experiments on the Cityscapes, ADE20K datasets have proved that our method can bring significant performance improvement.
翻译:现有方法侧重于使用类内特性以改善语义分解性性能。 如何描述类内象素和类间象素之间的关系是提取歧视性代表性类内象素的关键。 在本文中,我们首次采用多种分布方式描述类内变异。 然后,建议多种分布式代表学习(\ textbf{MDRL})来增加语义分化的像素表达式。 同时, 我们设计了一种类内多种分布一致性战略, 以构建嵌入像素的歧视性多重分布式表达式。 此外, 我们提出了一个多分布式拼凑模块, 以汇总相应类的多重分布, 以加强像素语义信息。 我们的方法可以无缝地融入流行的分化框架 FCN/PSPNet/CCNet, 并实现5.61<unk> /1.75<unk> / 0.75<unk> mIOU 改进 ASDE20K。 关于城市景观的广泛实验, ADE20K数据集证明我们的方法可以带来显著的绩效改进。</s>