Recent technological developments have shown significant potential for transforming urban mobility. Considering first- and last-mile travel and short trips, the rapid adoption of dockless bike-share systems showed the possibility of disruptive change, while simultaneously presenting new challenges, such as fleet management or the use of public spaces. In this paper, we evaluate the operational characteristics of a new class of shared vehicles that are being actively developed in the industry: scooters with self-repositioning capabilities. We do this by adapting the methodology of shareability networks to a large-scale dataset of dockless bike-share usage, giving us estimates of ideal fleet size under varying assumptions of fleet operations. We show that the availability of self-repositioning capabilities can help achieve up to 10 times higher utilization of vehicles than possible in current bike-share systems. We show that actual benefits will highly depend on the availability of dedicated infrastructure, a key issue for scooter and bicycle use. Based on our results, we envision that technological advances can present an opportunity to rethink urban infrastructures and how transportation can be effectively organized in cities.


翻译:近期的技术发展显示了改变城市流动性的巨大潜力。考虑到第一英里和最后一英里旅行和短途旅行,迅速采用无码头的单车共享系统表明有可能发生破坏性变化,同时提出新的挑战,如车队管理或使用公共空间。在本文件中,我们评估了该行业正在积极开发的新型共用车辆的操作特点:具有自我定位能力的摩托车。我们这样做的方法是,将共享网络的方法调整到无码头自行车共享的大规模数据集,让我们对车队运作的不同假设下的理想机队规模作出估计。我们表明,拥有自我定位能力可以帮助使车辆的使用达到现有自行车共享系统可能使用的10倍以上。我们表明,实际效益将在很大程度上取决于专用基础设施的提供情况,这是摩托车和自行车使用的一个关键问题。根据我们的结果,我们设想技术进步可以提供一个机会,重新思考城市基础设施和如何有效地组织城市交通。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
3+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员