Human brain atlases provide spatial reference systems for data characterizing brain organization at different levels, coming from different brains. Cytoarchitecture is a basic principle of the microstructural organization of the brain, as regional differences in the arrangement and composition of neuronal cells are indicators of changes in connectivity and function. Automated scanning procedures and observer-independent methods are prerequisites to reliably identify cytoarchitectonic areas, and to achieve reproducible models of brain segregation. Time becomes a key factor when moving from the analysis of single regions of interest towards high-throughput scanning of large series of whole-brain sections. Here we present a new workflow for mapping cytoarchitectonic areas in large series of cell-body stained histological sections of human postmortem brains. It is based on a Deep Convolutional Neural Network (CNN), which is trained on a pair of section images with annotations, with a large number of un-annotated sections in between. The model learns to create all missing annotations in between with high accuracy, and faster than our previous workflow based on observer-independent mapping. The new workflow does not require preceding 3D-reconstruction of sections, and is robust against histological artefacts. It processes large data sets with sizes in the order of multiple Terabytes efficiently. The workflow was integrated into a web interface, to allow access without expertise in deep learning and batch computing. Applying deep neural networks for cytoarchitectonic mapping opens new perspectives to enable high-resolution models of brain areas, introducing CNNs to identify borders of brain areas.
翻译:人类大脑图集为不同层次、来自不同大脑的大脑组织特征的数据提供空间参考系统。 星体结构是大脑微观结构组织的一项基本原则,因为神经细胞安排和构成的区域差异是连接和功能变化的指标。 自动扫描程序和观察员独立的方法是可靠地识别细胞结构区域并实现可复制的大脑隔离模式的先决条件。 当从分析感兴趣的单一区域转向对大量整体脑部分进行高通量扫描时,时间就成为一个关键因素。 我们在这里展示了用于在大量细胞-身体内含神经细胞的细胞构造区域进行绘图的新工作流程,因为神经细胞细胞细胞细胞结构的分布和构成是显示连接和功能变化的标志。 自动扫描程序和观察独立的方法是可靠地识别带有说明的一对齐部分图像的先决条件, 在两者之间有大量未经附加注释的章节中, 模型学会了所有缺少的直线图解图, 并且比我们以前基于观察- 直线结构图的大脑结构图集更快。 新的工作流程不需要在高细胞- 直径的网络中进行高清晰的直线路路路路, 将新的工作流程应用到高清晰的流程到高清晰的路径, 。 将新的工作流程是快速的直径路路路路路路路路路路流, 在前要求中, 向前的多路路路路路路路路路路路路路路的学习到高的学习到多路路路路段, 将要求到高级学习到多路路路路路路路路路路路路路。