Kitazawa (2013, 2016) showed that the common parameters in the panel logit AR(1) model with strictly exogenous covariates and fixed effects are estimable at the root-n rate using the Generalized Method of Moments. Honor\'e and Weidner (2020) extended his results in various directions: they found additional moment conditions for the logit AR(1) model and also considered estimation of logit AR(p) models with p>1. In this note we prove a conjecture in their paper and show that for given values of the initial condition, the covariates and the common parameters 2^{T}-2T of their moment functions for the logit AR(1) model are linearly independent and span the set of valid moment functions, which is a 2^{T}-2T-dimensional linear subspace of the 2^{T}-dimensional vector space of real valued functions over the outcomes y element of {0,1}^{T}. We also prove that when p=2 and T element of {3,4,5}, there are, respectively, 2^{T}-4(T-1) and 2^{T}-(3T-2) linearly independent moment functions for the panel logit AR(2) models with and without covariates.
翻译:基塔泽(2013,2016年) 显示,使用通用时钟法,具有严格外源共差和固定效应的小组登录AR(1)模型的共同参数可按根值计算。Honor\'e和Weidner(2020年)将结果扩展到不同方向:他们找到了对AR(1)模型的日志的额外时间条件,并用p > 来考虑对 AR(p) 模型的日志进行估计。 在本说明中,我们证明他们的文件中有一个推测,并表明,对于初始状态的某个值而言,AR(1) 模型的日志函数的共变数和共同参数 2 ⁇ T} 2 ⁇ T} 2T 的时数函数是线性独立的,跨越了有效时钟函数组的集合,即 2 ⁇ T}-2T- 维的天线性子空间,即 2 ⁇ T) 和 {0,1 ⁇ T} 。我们还证明,在 p=2和T元素的 3,4,5}, 和 2 ⁇ T 和 2 ⁇ T(3T-2) 独立时钟函数中,在不使用正态 ASates 。