Comprehending human motion is a fundamental challenge for developing Human-Robot Collaborative applications. Computer vision researchers have addressed this field by only focusing on reducing error in predictions, but not taking into account the requirements to facilitate its implementation in robots. In this paper, we propose a new model based on Transformer that simultaneously deals with the real time 3D human motion forecasting in the short and long term. Our 2-Channel Transformer (2CH-TR) is able to efficiently exploit the spatio-temporal information of a shortly observed sequence (400ms) and generates a competitive accuracy against the current state-of-the-art. 2CH-TR stands out for the efficient performance of the Transformer, being lighter and faster than its competitors. In addition, our model is tested in conditions where the human motion is severely occluded, demonstrating its robustness in reconstructing and predicting 3D human motion in a highly noisy environment. Our experiment results show that the proposed 2CH-TR outperforms the ST-Transformer, which is another state-of-the-art model based on the Transformer, in terms of reconstruction and prediction under the same conditions of input prefix. Our model reduces in 8.89% the mean squared error of ST-Transformer in short-term prediction, and 2.57% in long-term prediction in Human3.6M dataset with 400ms input prefix.
翻译:计算机视觉研究人员只注重减少预测中的错误,而没有考虑到促进机器人执行的所需条件。在本文件中,我们提出了一个新的基于变异器的新模型,该模型同时处理短期和长期3D人类运动实时预测。我们的2Channeel变形器(2CH-TR)能够有效地利用短期观测到的400个序列(400米)的时空信息,并针对目前的最新技术创造有竞争力的准确性。 2CH-TR展示了变异器的高效性能,比其竞争对手更轻、更快。此外,我们提出的模型是在人类运动严重隐蔽的情况下测试的,表明其在高度紧张的环境中重建和预测3D人类运动的稳健性。我们的实验结果表明,拟议的2CH-TR比ST-Trafor更符合短期测序(400米),这是另一个基于变异器的高级模型,比其竞争者更轻,速度更快。此外,我们的模型在人类运动严重隐蔽的情况下,测试了3D人类运动在高度紧张的环境中重建和预测3D动运动。我们的输入-TRS-TRevorfex前的预测中,在2—89前的短期预测中,在STRimal-rial-rial-rial-rial-rial-ride-ride-ride-rivide-ride-ride-riview-rividu,在S-riview的预测中,在S-rividu-ride-ride-ride-I-ride-I-I-riview-rivil-I-I-I-I-I-I-I-I-I-I-Ily-I-I-Ider-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-Ider-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-