Tropospheric ozone (O3) is a greenhouse gas which can absorb heat and make the weather even hotter during extreme heatwaves. Besides, it is an influential ground-level air pollutant which can severely damage the environment. Thus evaluating the importance of various factors related to the O3 formation process is essential. However, O3 simulated by the available climate models exhibits large variance in different places, indicating the insufficiency of models in explaining the O3 formation process correctly. In this paper, we aim to identify and understand the impact of various factors on O3 formation and predict the O3 concentrations under different pollution-reduced and climate change scenarios. We employ six supervised methods to estimate the observed O3 using fourteen meteorological and chemical variables. We find that the deep neural network (DNN) and long short-term memory (LSTM) based models can predict O3 concentrations accurately. We also demonstrate the importance of several variables in this prediction task. The results suggest that while Nitrogen Oxides negatively contributes to predicting O3, solar radiation makes a significantly positive contribution. Furthermore, we apply our two best models on O3 prediction under different global warming and pollution reduction scenarios to improve the policy-making decisions in the O3 reduction.


翻译:活动层臭氧(O3)是一种温室气体,可以吸收热,使天气在极端热浪期间甚至更热。此外,它是一种有影响力的地面空气污染物,可以对环境造成严重破坏。因此,评估与O3形成过程有关的各种因素的重要性至关重要。然而,由现有气候模型模拟的O3在不同地点显示出巨大的差异,表明模型不足以正确解释O3形成过程。在本文件中,我们的目标是查明和了解各种因素对O3形成的影响,并预测不同污染减少和气候变化情景下的O3浓度。我们采用六种监督方法,利用14个气象和化学变量估计观察到的O3。我们发现,基于深神经网络(DNNN)和长期内存(LSTM)的模型可以准确预测O3的浓度。我们还表明,在这项预测任务中,若干变量的重要性。结果表明,虽然氮氧氧化物对预测O3有负面影响,但太阳辐射将作出显著的积极贡献。此外,我们在不同的全球变暖和减少污染情景下对O3的预测采用了两种最佳模型。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年7月1日
Arxiv
0+阅读 · 2021年6月30日
Incremental Reading for Question Answering
Arxiv
5+阅读 · 2019年1月15日
Arxiv
6+阅读 · 2018年6月18日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员