Efficient explorative data analysis systems must take into account both what a user knows and wants to know. This paper proposes a principled framework for interactive visual exploration of relations in data, through views most informative given the user's current knowledge and objectives. The user can input pre-existing knowledge of relations in the data and also formulate specific exploration interests, which are then taken into account in the exploration. The idea is to steer the exploration process towards the interests of the user, instead of showing uninteresting or already known relations. The user's knowledge is modelled by a distribution over data sets parametrised by subsets of rows and columns of data, called tile constraints. We provide a computationally efficient implementation of this concept based on constrained randomisation. Furthermore, we describe a novel dimensionality reduction method for finding the views most informative to the user, which at the limit of no background knowledge and with generic objectives reduces to PCA. We show that the method is suitable for interactive use and is robust to noise, outperforms standard projection pursuit visualisation methods, and gives understandable and useful results in analysis of real-world data. We provide an open-source implementation of the framework.
翻译:高效的探索数据分析系统必须考虑到用户所知道和想知道的信息。本文件提出一个原则性框架,通过根据用户当前知识和目标提供最丰富信息的观点,对数据的关系进行互动直观探索。用户可以输入数据中原有的关系知识,并提出具体的探索利益,然后在勘探中予以考虑。其想法是引导勘探进程面向用户的利益,而不是显示不感兴趣或已知的关系。用户的知识是仿照数据组的分布模式,根据数据组的分行和栏目(称为图案限制)对数据集进行平行的分布。我们根据有限的随机化,对这一概念进行了高效的计算。此外,我们描述了一种新颖的减少维度的方法,以寻找用户最知情的观点,在没有背景知识的限度内,通用目标降低到常设仲裁法院。我们表明,该方法适合互动使用,而且对噪音具有很强的力度,比标准预测的可视化方法要好,在分析现实世界数据时提供了可理解和有用的结果。我们提供了框架的开源执行。我们提供了框架的实施。我们提供了一种可理解和有用的结果。