Several physically inspired problems have been proven undecidable; examples are the spectral gap problem and the membership problem for quantum correlations. Most of these results rely on reductions from a handful of undecidable problems, such as the halting problem, the tiling problem, the Post correspondence problem or the matrix mortality problem. All these problems have a common property: they have an NP-hard bounded version. This work establishes a relation between undecidable unbounded problems and their bounded NP-hard versions. Specifically, we show that NP-hardness of a bounded version follows easily from the reduction of the unbounded problems. This leads to new and simpler proofs of the NP-hardness of bounded version of the Post correspondence problem, the matrix mortality problem, the positivity of matrix product operators, the reachability problem, the tiling problem, and the ground state energy problem. This work sheds light on the intractability of problems in theoretical physics and on the computational consequences of bounding a parameter.
翻译:几个物理激发的问题被证明是不可分的;例子有光谱差距问题和量子相关性的成员问题。这些结果大多依赖于少数无法分辨的问题的减少,如停滞问题、平铺问题、邮递问题或矩阵死亡率问题。所有这些问题都有共同的特性:它们有一个NP硬的捆绑版本。这项工作在不可分的不捆绑问题与被捆绑的NP硬版本之间建立了关系。具体地说,我们表明,一个封闭的版本的NP硬性很容易产生于减少未捆绑的问题。这导致新的、更简单的证明邮递问题捆绑版本的NP的硬性、矩阵死亡率问题、矩阵产品操作者的假设性、可达性问题、平铺问题和地面状态能源问题。这项工作揭示了理论物理学中问题的可忽略性和约束参数的计算后果。