The StarCraft II Multi-Agent Challenge (SMAC) was created to be a challenging benchmark problem for cooperative multi-agent reinforcement learning (MARL). SMAC focuses exclusively on the problem of StarCraft micromanagement and assumes that each unit is controlled individually by a learning agent that acts independently and only possesses local information; centralized training is assumed to occur with decentralized execution (CTDE). To perform well in SMAC, MARL algorithms must handle the dual problems of multi-agent credit assignment and joint action evaluation. This paper introduces a new architecture TransMix, a transformer-based joint action-value mixing network which we show to be efficient and scalable as compared to the other state-of-the-art cooperative MARL solutions. TransMix leverages the ability of transformers to learn a richer mixing function for combining the agents' individual value functions. It achieves comparable performance to previous work on easy SMAC scenarios and outperforms other techniques on hard scenarios, as well as scenarios that are corrupted with Gaussian noise to simulate fog of war.
翻译:创建StarCraft II多代理人挑战(SMAC)是为了成为合作性多试剂强化学习(MARL)的一个具有挑战性的基准问题。 SMAC专门侧重于StarCraft微管理的问题,并假定每个单位都由独立行事并只拥有当地信息的学习代理人单独控制;假定集中培训是分散执行的(CTDE)进行。为了在SMAC运行良好,MAR算法必须处理多试剂信用分配和联合行动评估的双重问题。本文介绍了一个新的结构 TransMix,一个基于变压器的联合行动价值混合网络,与其它最先进的MARL合作解决方案相比,我们显示了其效率和可伸缩性。 TransMix利用变压器的能力学习更丰富的混合功能,将代理人的个人价值功能结合起来。它取得与以前在简单SMAC假设情景上的工作和在硬情景上超越其他技术的类似业绩,以及与高萨噪音模拟战争迷雾的坏情形相比,我们显示出了效率和可伸缩性。