In interactive coding, Alice and Bob wish to compute some function $f$ of their individual private inputs $x$ and $y$. They do this by engaging in a non-adaptive (fixed order, fixed length) protocol to jointly compute $f(x,y)$. The goal is to do this in an error-resilient way, such that even given some fraction of adversarial corruptions, both parties still learn $f(x,y)$. In this work, we study the optimal error resilience of such a protocol in the face of adversarial bit flip or erasures. While the optimal error resilience of such a protocol over a large alphabet is well understood, the situation over the binary alphabet has remained open. In this work, we resolve this problem of determining the optimal error resilience over binary channels. In particular, we construct protocols achieving $\frac16$ error resilience over the binary bit flip channel and $\frac12$ error resilience over the binary erasure channel, for both of which matching upper bounds are known. We remark that the communication complexity of our binary bit flip protocol is polynomial in the size of the inputs, and the communication complexity of our binary erasure protocol is linear in the size of the minimal noiseless protocol computing $f$.
翻译:在互动编码中, Alice 和 Bob 想要计算他们个人私人投入的某种函数$f美元x美元和$y美元。 他们这样做的方法是采用非适应性(固定顺序、固定长度)协议, 共同计算$f(x)y美元。 目标是以错误抵抗性的方式解决这个问题, 即便考虑到部分对抗性腐败, 双方都仍然学习了 $f(x)y美元。 在这项工作中, 我们研究了在对抗性翻转或擦除时这种协议的最大错误应变能力。 虽然这种协议在大字母上的适应性最强的错误应变能力得到了很好的理解, 但二元字母上下的情况仍然开放。 在这项工作中, 我们解决了如何在双轨通道上确定最佳错误应变能力的问题。 特别是, 我们构建了协议, 在双倍翻转频道上行和双倍消音频频道上错应变能力方面达到 $1美元。 我们在双倍消音频频道上, 和双倍消化频道上错应变能力最优。 我们指出, 我们的双倍比值协议的通信复杂性是最低的硬化程序, 。