We study methods for estimating model uncertainty for neural networks (NNs). To isolate the effect of model uncertainty, we focus on a noiseless setting with scarce training data. We introduce five important desiderata regarding model uncertainty that any method should satisfy. However, we find that established benchmarks often fail to reliably capture some of these desiderata, even those that are required by Bayesian theory. To address this, we introduce a new approach for capturing model uncertainty for NNs, which we call Neural Optimization-based Model Uncertainty (NOMU). The main idea of NOMU is to design a network architecture consisting of two connected sub-NNs, one for model prediction and one for model uncertainty, and to train it using a carefully-designed loss function. Importantly, our design enforces that NOMU satisfies our five desiderata. Due to its modular architecture, NOMU can provide model uncertainty for any given (previously trained) NN if given access to its training data. We first experimentally study noiseless regression with scarce training data to highlight the deficiencies of the established benchmarks. Finally, we study the important task of Bayesian optimization (BO) with costly evaluations, where good model uncertainty estimates are essential. Our results show that NOMU performs as well or better than state-of-the-art benchmarks.
翻译:我们研究神经网络模型不确定性的估算方法。为了分离模型不确定性的影响,我们侧重于一个无噪音且缺乏培训数据的模型不确定性。我们引入了五大关于任何方法都应满足的模型不确定性的偏差。然而,我们发现,既定基准往往无法可靠地捕捉部分此类偏差,甚至是巴伊西亚理论所要求的偏差。为了解决这个问题,我们引入了一种新的方法来捕捉NNN的模型不确定性,我们称之为以神经优化为基础的模型不确定性。NOMU的主要想法是设计一个由两个连接的子NNW组成的网络结构,一个用于模型预测,一个用于模型不确定性,并使用精心设计的损失函数来培训它。重要的是,我们的设计执行NOMU达到我们五个偏差的功能。由于它的模块结构,如果获得培训数据,我们可以对任何给定的(以前受过培训的)NNNNNN提供模型不确定性的模型。我们首先实验性研究无噪音回归,用稀少的培训数据来突出既定基准的缺陷。最后,我们研究了BA-RO优化的重要任务,而我们的NO-MU(BO)的模型则是良好的评估结果。