Dendritic microstructures are ubiquitous in nature and are the primary solidification morphologies in metallic materials. Techniques such as x-ray computed tomography (XCT) have provided new insights into dendritic phase transformation phenomena. However, manual identification of dendritic morphologies in microscopy data can be both labor intensive and potentially ambiguous. The analysis of 3D datasets is particularly challenging due to their large sizes (terabytes) and the presence of artifacts scattered within the imaged volumes. In this study, we trained 3D convolutional neural networks (CNNs) to segment 3D datasets. Three CNN architectures were investigated, including a new 3D version of FCDense. We show that using hyperparameter optimization (HPO) and fine-tuning techniques, both 2D and 3D CNN architectures can be trained to outperform the previous state of the art. The 3D U-Net architecture trained in this study produced the best segmentations according to quantitative metrics (pixel-wise accuracy of 99.84% and a boundary displacement error of 0.58 pixels), while 3D FCDense produced the smoothest boundaries and best segmentations according to visual inspection. The trained 3D CNNs are able to segment entire 852 x 852 x 250 voxel 3D volumes in only ~60 seconds, thus hastening the progress towards a deeper understanding of phase transformation phenomena such as dendritic solidification.


翻译:Dentritic 微结构在性质上是无处不在的,是金属材料中的主要固化形态。X光计算断层成像仪(XCT)等技术为进化阶段转变现象提供了新的洞察力。然而,在显微镜数据中人工辨识进化形态既可能是劳动密集型的,也可能是潜在的模糊的。对3D数据集的分析尤其具有挑战性,因为其大小(字节)很大,并且存在分布在图像量内的文物。在本研究中,我们培训了3D 的3D 直流神经网络(CNNs)到 3D 数据集。对三个CNN 结构进行了调查,包括一个新的 3D FCDensense 版本。我们表明,使用超参数优化(HPO)和微调技术,2D和3D WNCN 结构能够超越原艺术的状态。本研究中训练的3D U-Net结构根据量化指标(99.84%的精度准确度,以及FD-CD 3D 的深度变异度) 生成了3D 3x 3x 和直观检查段, 3x 最精确的深度的深度, 级为3D X 级的深度的深度, 级的深度到直观分解为0.8D 。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员