Within the framework of evidence theory, the confidence functions of different information can be combined into a combined confidence function to solve uncertain problems. The Dempster combination rule is a classic method of fusing different information. This paper proposes a similar confidence function for the time point in the time series. The Dempster combination rule can be used to fuse the growth rate of the last time point, and finally a relatively accurate forecast data can be obtained. Stock price forecasting is a concern of economics. The stock price data is large in volume, and more accurate forecasts are required at the same time. The classic methods of time series, such as ARIMA, cannot balance forecasting efficiency and forecasting accuracy at the same time. In this paper, the fusion method of evidence theory is applied to stock price prediction. Evidence theory deals with the uncertainty of stock price prediction and improves the accuracy of prediction. At the same time, the fusion method of evidence theory has low time complexity and fast prediction processing speed.


翻译:在证据理论的框架内,不同信息的信任功能可以合并成一个综合信任功能,以解决不确定的问题。Dempster组合规则是利用不同信息的经典方法。本文建议对时间序列的时间点使用类似的信任功能。Dempster组合规则可以用来融合最后一个时间点的增长率,最后可以取得一个相对准确的预测数据。股票价格预测是经济学的一个问题。股票价格数据数量很大,同时需要更准确的预测。典型的时间序列方法,如ARIMA,不能同时平衡预测效率和预测准确性。在本文中,合并证据理论应用于股票价格预测,证据理论处理股票价格预测的不确定性,提高预测的准确性。与此同时,合并证据理论方法的时间复杂性较小,预测处理速度也较快。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年9月21日
Arxiv
15+阅读 · 2021年2月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员