Kernel analog forecasting (KAF) is a powerful methodology for data-driven, non-parametric forecasting of dynamically generated time series data. This approach has a rigorous foundation in Koopman operator theory and it produces good forecasts in practice, but it suffers from the heavy computational costs common to kernel methods. This paper proposes a streaming algorithm for KAF that only requires a single pass over the training data. This algorithm dramatically reduces the costs of training and prediction without sacrificing forecasting skill. Computational experiments demonstrate that the streaming KAF method can successfully forecast several classes of dynamical systems (periodic, quasi-periodic, and chaotic) in both data-scarce and data-rich regimes. The overall methodology may have wider interest as a new template for streaming kernel regression.
翻译:Kernel模拟预报(KAF)是数据驱动的非参数性预测动态生成的时间序列数据的有力方法,这种方法在Koopman操作员理论中具有严格的基础,在实践中可以产生良好的预测,但实际上却受到内核方法常见的高昂计算成本的影响。本文建议KAF使用流算法,只需要一次通过培训数据即可。这一算法在不牺牲预测技能的情况下大大减少培训和预测费用。计算实验表明,流流式KAF方法能够成功地预测数据碎裂和数据丰富系统中的几类动态系统(周期性、半周期性和混乱性)。总体方法作为流式内核回归的新模板,可能具有更广泛的兴趣。