点击上方“专知”关注获取专业AI知识!
【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢!专知为大家呈送专知主题荟萃知识资料大全集荟萃 (入门/进阶/综述/视频/代码/专家等),请大家查看!专知访问www.zhuanzhi.ai, 或关注微信公众号后台回复" 专知"进入专知,搜索感兴趣主题查看。此外,我们也提供该文网页桌面手机端(www.zhuanzhi.ai)完整访问,可直接点击访问收录链接地址,以及pdf版下载链接,请文章末尾查看!此为初始版本,请大家指正补充,欢迎在后台留言!欢迎大家转发分享~
行人重识别 Person Re-identification / Person Retrieval 专知荟萃
入门学习
进阶论文及代码
Person Re-identification / Person Retrieval
Person Search
Re-ID with GAN
Vehicle Re-ID
Deep Metric Learning
Re-ID with Attributes Prediction
Video-based Person Re-Identification
Re-ranking
实战项目
教程
综述
数据集
图像数据集
Attribute相关数据集
视频相关数据集
NLP相关数据集
领域专家
行人重识别综述
[http://www.jianshu.com/p/98cc04cca0ae?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation\]
基于深度学习的Person Re-ID(综述)
[http://blog.csdn.net/linolzhang/article/details/71075756]
郑哲东 -Deep-ReID:行人重识别的深度学习方法
PPT:[https://www.slideshare.net/ZhedongZheng1/deep-reid]
视频:[http://www.bilibili.com/video/av13796843/]
【行人识别】Deep Transfer Learning for Person Re-identification
[http://blog.csdn.net/shenxiaolu1984/article/details/53607268]
知乎专栏:行人重识别 [https://zhuanlan.zhihu.com/personReid]
行人重识别综述:从哈利波特地图说起
行人再识别中的迁移学习:图像风格转换(Learning via Translation)
行人对齐+重识别网络
SVDNet for Pedestrian Retrieval:CNN到底认为哪个投影方向是重要的?
用GAN生成的图像做训练?Yes!
2017 ICCV 行人检索/重识别 接受论文汇总
从人脸识别 到 行人重识别,下一个风口
GAN(生成式对抗网络)的研究现状,以及在行人重识别领域的应用前景?
[https://www.zhihu.com/question/53001881/answer/170077548]
Re-id Resources
[https://wangzwhu.github.io/home/re_id_resources.html\]
行人再识别(行人重识别)【包含与行人检测的对比】
[http://blog.csdn.net/liuqinglong110/article/details/41699861]
行人重识别综述(Person Re-identification: Past, Present and Future)
[http://blog.csdn.net/auto1993/article/details/74091803]
DeepReID: Deep Filter Pairing Neural Network for Person Re-Identification
intro: CVPR 2014
paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf]
An Improved Deep Learning Architecture for Person Re-Identification
intro: CVPR 2015
paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ahmed_An_Improved_Deep_2015_CVPR_paper.pdf]
github: [https://github.com/Ning-Ding/Implementation-CVPR2015-CNN-for-ReID]
Deep Ranking for Person Re-identification via Joint Representation Learning
intro: IEEE Transactions on Image Processing [TIP], 2016
arxiv: [https://arxiv.org/abs/1505.06821]
PersonNet: Person Re-identification with Deep Convolutional Neural Networks
arxiv: [http://arxiv.org/abs/1601.07255]
Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification
intro: CVPR 2016
arxiv: [https://arxiv.org/abs/1604.07528]
github: [https://github.com/Cysu/dgd_person_reid]
Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function
intro: CVPR 2016
paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Cheng_Person_Re-Identification_by_CVPR_2016_paper.pdf]
End-to-End Comparative Attention Networks for Person Re-identification
[https://arxiv.org/abs/1606.04404]
A Multi-task Deep Network for Person Re-identification
arxiv: [http://arxiv.org/abs/1607.05369]
Gated Siamese Convolutional Neural Network Architecture for Human Re-Identification
arxiv: [http://arxiv.org/abs/1607.08378]
A Siamese Long Short-Term Memory Architecture for Human Re-Identification
arxiv: [http://arxiv.org/abs/1607.08381]
Gated Siamese Convolutional Neural Network Architecture for Human Re-Identification
arxiv: [https://arxiv.org/abs/1607.08378]
Person Re-identification: Past, Present and Future
[https://arxiv.org/abs/1610.02984]
Deep Learning Prototype Domains for Person Re-Identification
arxiv: [https://arxiv.org/abs/1610.05047]
Deep Transfer Learning for Person Re-identification
arxiv: [https://arxiv.org/abs/1611.05244]
A Discriminatively Learned CNN Embedding for Person Re-identification
arxiv: [https://arxiv.org/abs/1611.05666]
github[MatConvnet]: [https://github.com/layumi/2016_person_re-ID]
Structured Deep Hashing with Convolutional Neural Networks for Fast Person Re-identification
arxiv: [https://arxiv.org/abs/1702.04179]
In Defense of the Triplet Loss for Person Re-Identification
arxiv: [https://arxiv.org/abs/1703.07737]
github[Theano]: [https://github.com/VisualComputingInstitute/triplet-reid]
Beyond triplet loss: a deep quadruplet network for person re-identification
intro: CVPR 2017
arxiv: [https://arxiv.org/abs/1704.01719]
Part-based Deep Hashing for Large-scale Person Re-identification
intro: IEEE Transactions on Image Processing, 2017
arxiv: [https://arxiv.org/abs/1705.02145]
Deep Person Re-Identification with Improved Embedding
[https://arxiv.org/abs/1705.03332]
Towards a Principled Integration of Multi-Camera Re-Identification and Tracking through Optimal Bayes Filters
arxiv: [https://arxiv.org/abs/1705.04608]
github: [https://github.com/VisualComputingInstitute/towards-reid-tracking]
Person Re-Identification by Deep Joint Learning of Multi-Loss Classification
intro: IJCAI 2017
arxiv: [https://arxiv.org/abs/1705.04724]
Attention-based Natural Language Person Retrieval
intro: CVPR 2017 Workshop [vision meets cognition]
keywords: Bidirectional Long Short- Term Memory [BLSTM]
arxiv: [https://arxiv.org/abs/1705.08923]
Unsupervised Person Re-identification: Clustering and Fine-tuning
arxiv: [https://arxiv.org/abs/1705.10444]
github: [https://github.com/hehefan/Unsupervised-Person-Re-identification-Clustering-and-Fine-tuning]
Deep Representation Learning with Part Loss for Person Re-Identification
[https://arxiv.org/abs/1707.00798]
Pedestrian Alignment Network for Large-scale Person Re-identification
[https://raw.githubusercontent.com/layumi/Pedestrian_Alignment/master/fig2.jpg]
arxiv: [https://arxiv.org/abs/1707.00408]
github: [https://github.com/layumi/Pedestrian_Alignment]
Deep Reinforcement Learning Attention Selection for Person Re-Identification
[https://arxiv.org/abs/1707.02785]
Learning Efficient Image Representation for Person Re-Identification
[https://arxiv.org/abs/1707.02319]
Person Re-identification Using Visual Attention
intro: ICIP 2017
arxiv: [https://arxiv.org/abs/1707.07336]
Deeply-Learned Part-Aligned Representations for Person Re-Identification
intro: ICCV 2017
arxiv: [https://arxiv.org/abs/1707.07256]
What-and-Where to Match: Deep Spatially Multiplicative Integration Networks for Person Re-identification
[https://arxiv.org/abs/1707.07074]
Deep Feature Learning via Structured Graph Laplacian Embedding for Person Re-Identification
[https://arxiv.org/abs/1707.07791]
Divide and Fuse: A Re-ranking Approach for Person Re-identification
intro: BMVC 2017
arxiv: [https://arxiv.org/abs/1708.04169]
Large Margin Learning in Set to Set Similarity Comparison for Person Re-identification
intro: IEEE Transactions on Multimedia
arxiv: [https://arxiv.org/abs/1708.05512]
Multi-scale Deep Learning Architectures for Person Re-identification
intro: ICCV 2017
arxiv: [https://arxiv.org/abs/1709.05165]
Pose-driven Deep Convolutional Model for Person Re-identification
[https://arxiv.org/abs/1709.08325]
HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis
intro: ICCV 2017. CUHK & SenseTime,
arxiv: [https://arxiv.org/abs/1709.09930]
github: [https://github.com/xh-liu/HydraPlus-Net]
Person Re-Identification with Vision and Language
[https://arxiv.org/abs/1710.01202]
Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification
[https://arxiv.org/abs/1710.00478]
Learning Deep Context-aware Features over Body and Latent Parts for Person Re-identification
intro: CVPR 2017. CASIA
keywords: Multi-Scale Context-Aware Network [MSCAN]
arxiv: [https://arxiv.org/abs/1710.06555]
Pseudo-positive regularization for deep person re-identification
[https://arxiv.org/abs/1711.06500]
Let Features Decide for Themselves: Feature Mask Network for Person Re-identification
keywords: Feature Mask Network [FMN]
arxiv: [https://arxiv.org/abs/1711.07155]
Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification
[https://arxiv.org/abs/1711.07027]
AlignedReID: Surpassing Human-Level Performance in Person Re-Identification
intro: Megvii, Inc & Zhejiang University
arxiv: [https://arxiv.org/abs/1711.08184]
evaluation website: [Market1501]: [http://reid-challenge.megvii.com/]
evaluation website: [CUHK03]: [http://reid-challenge.megvii.com/cuhk03]
Region-based Quality Estimation Network for Large-scale Person Re-identification
intro: AAAI 2018
arxiv: [https://arxiv.org/abs/1711.08766]
Deep-Person: Learning Discriminative Deep Features for Person Re-Identification
[https://arxiv.org/abs/1711.10658]
A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking
arxiv: [https://arxiv.org/abs/1711.10378]
github: [https://github.com/pse-ecn/pose-sensitive-embedding]
Joint Detection and Identification Feature Learning for Person Search
intro: CVPR 2017
keywords: Online Instance Matching OIM loss function
homepage[dataset+code]:[http://www.ee.cuhk.edu.hk/~xgwang/PS/dataset.html]
arxiv: [https://arxiv.org/abs/1604.01850]
paper: [http://www.ee.cuhk.edu.hk/~xgwang/PS/paper.pdf]
github[official. Caffe]: [https://github.com/ShuangLI59/person_search]
Person Re-identification in the Wild
intro: CVPR 2017 spotlight
keywords: PRW dataset
project page: [http://www.liangzheng.com.cn/Project/project_prw.html]
arxiv: [https://arxiv.org/abs/1604.02531]
github: [https://github.com/liangzheng06/PRW-baseline]
IAN: The Individual Aggregation Network for Person Search
[https://arxiv.org/abs/1705.05552]
Neural Person Search Machines
intro: ICCV 2017
arxiv: [https://arxiv.org/abs/1707.06777]
Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro
intro: ICCV 2017
arxiv: [https://arxiv.org/abs/1701.07717]
github: [https://github.com/layumi/Person-reID_GAN]
Person Transfer GAN to Bridge Domain Gap for Person Re-Identification
[https://arxiv.org/abs/1711.08565]
Learning Deep Neural Networks for Vehicle Re-ID with Visual-spatio-temporal Path Proposals
intro: ICCV 2017
arxiv: [https://arxiv.org/abs/1708.03918]
Deep Metric Learning for Person Re-Identification
intro: ICPR 2014
paper: [http://www.cbsr.ia.ac.cn/users/zlei/papers/ICPR2014/Yi-ICPR-14.pdf]
Deep Metric Learning for Practical Person Re-Identification
[https://arxiv.org/abs/1407.4979]
Constrained Deep Metric Learning for Person Re-identification
[https://arxiv.org/abs/1511.07545]
DarkRank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer
intro: TuSimple
keywords: pedestrian re-identification
arxiv: [https://arxiv.org/abs/1707.01220]
Deep Attributes Driven Multi-Camera Person Re-identification
intro: ECCV 2016
arxiv: [https://arxiv.org/abs/1605.03259]
Improving Person Re-identification by Attribute and Identity Learning
[https://arxiv.org/abs/1703.07220]
Recurrent Convolutional Network for Video-based Person Re-Identification
intro: CVPR 2016
paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/McLaughlin_Recurrent_Convolutional_Network_CVPR_2016_paper.pdf]
github: [https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID]
Deep Recurrent Convolutional Networks for Video-based Person Re-identification: An End-to-End Approach
[https://arxiv.org/abs/1606.01609]
Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person Re-Identification
intro: ICCV 2017
arxiv: [https://arxiv.org/abs/1708.02286]
Three-Stream Convolutional Networks for Video-based Person Re-Identification
[https://arxiv.org/abs/1712.01652]
Re-ranking Person Re-identification with k-reciprocal Encoding
intro: CVPR 2017
arxiv: [https://arxiv.org/abs/1701.08398]
github: [https://github.com/zhunzhong07/person-re-ranking]
Open-ReID: Open source person re-identification library in python
intro: Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different datasets, a full set of models and evaluation metrics, as well as examples to reproduce [near] state-of-the-art results.
project page: [https://cysu.github.io/open-reid/]
github[PyTorch]: [https://github.com/Cysu/open-reid]
examples: [https://cysu.github.io/open-reid/examples/training_id.html]
benchmarks: [https://cysu.github.io/open-reid/examples/benchmarks.html]
caffe-PersonReID
intro: Person Re-Identification: Multi-Task Deep CNN with Triplet Loss
gtihub: [https://github.com/agjayant/caffe-Person-ReID]
DukeMTMC-reID_baseline Matlab
[https://github.com/layumi/DukeMTMC-reID_baseline]
Code for IDE baseline on Market-1501
[https://github.com/zhunzhong07/IDE-baseline-Market-1501]
1st Workshop on Target Re-Identification and Multi-Target Multi-Camera Tracking
[https://reid-mct.github.io/]
郑哲东 -Deep-ReID:行人重识别的深度学习方法
PPT:[https://www.slideshare.net/ZhedongZheng1/deep-reid]
视频:[http://www.bilibili.com/video/av13796843/]
Person Identification in Large Scale Camera Networks Wei-Shi Zheng (郑伟诗)
[http://isee.sysu.edu.cn/~zhwshi/Research/ADL-OPEN.pdf\]
Person Re-Identification: Theory and Best Practice
[http://www.micc.unifi.it/reid-tutorial/slides/]
Person Re-identification: Past, Present and Future Liang Zheng, Yi Yang, Alexander G. Hauptmann
[https://arxiv.org/abs/1610.02984]
Person Re-Identification Book
[https://link.springer.com/book/10.1007/978-1-4471-6296-4]
A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets
[http://lanl.arxiv.org/abs/1605.09653]
People reidentification in surveillance and forensics: A survey
[https://dl.acm.org/citation.cfm?doid=2543581.2543596]
Re-ID 数据集汇总
[https://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/projectpages/reiddataset.html]
Market-1501 Dataset 751个人,27种属性,一共约三万张图像(一人多图)
[http://www.liangzheng.org/Project/project_reid.html\]
Code for IDE baseline on Market-1501 :[https://github.com/zhunzhong07/IDE-baseline-Market-1501]
DukeMTMC-reID DukeMTMC数据集的行人重识别子集,原始数据集地址(http://vision.cs.duke.edu/DukeMTMC/) ,为行人跟踪数据集。原始数据集包含了85分钟的高分辨率视频,采集自8个不同的摄像头。并且提供了人工标注的bounding box。最终,DukeMTMC-reID 包含了 16,522张训练图片(来自702个人), 2,228个查询图像(来自另外的702个人),以及 17,661 张图像的搜索库(gallery)。并提供切割后的图像供下载。
[https://github.com/layumi/DukeMTMC-reID_evaluation\]
CUHK01, 02, 03
[http://www.ee.cuhk.edu.hk/~rzhao/\]
RAP
[https://link.zhihu.com/?target=http%3A//rap.idealtest.org/]
Attribute for Market-1501and DukeMTMC_reID
[https://link.zhihu.com/?target=https%3A//vana77.github.io/]
Mars
[http://liangzheng.org/Project/project_mars.html]
PRID2011
[https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/]
自然语言搜图像
[http://xiaotong.me/static/projects/person-search-language/dataset.html]
自然语言搜索行人所在视频
[http://www.mi.t.u-tokyo.ac.jp/projects/person_search]
Shaogang Gong -[http://www.eecs.qmul.ac.uk/~sgg/\]
Xiaogang Wang
[http://www.ee.cuhk.edu.hk/~xgwang/\]
Weishi Zheng
[https://sites.google.com/site/sunnyweishi/]
Liang Zheng
[http://www.liangzheng.com.cn/]
Chen Change Loy
[https://staff.ie.cuhk.edu.hk/~ccloy/\]
Qi Tian
[http://www.cs.utsa.edu/~qitian/tian-publication-year.html\]
Shengcai Liao
[http://www.cbsr.ia.ac.cn/users/scliao/]
Rui Zhao
[http://www.ee.cuhk.edu.hk/~rzhao/\]
Yang Yang
[http://www.cbsr.ia.ac.cn/users/yyang/main.htm]
Ling Shao
[http://lshao.staff.shef.ac.uk/]
Ziyan Wu
[http://wuziyan.com/]
DaPeng Chen
[http://gr.xjtu.edu.cn/web/dapengchen/home]
Horst Bischof
[https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid450s]
Niki Martinel
[http://users.dimi.uniud.it/~niki.martinel/\]
Liang Lin
[http://hcp.sysu.edu.cn/home/]
Le An
[http://auto.hust.edu.cn/index.php?a=shows&catid=28&id=134]
Xiang Bai
[http://mc.eistar.net/~xbai/index.html\]
Xiaoyuan Jing
[http://mla.whu.edu.cn/plus/list.php?tid=2]
Fei Xiong
[http://robustsystems.coe.neu.edu/?q=content/research]
DaPeng Chen
[http://gr.xjtu.edu.cn/web/dapengchen/home]
初步版本,水平有限,有错误或者不完善的地方,欢迎大家提建议和补充,会一直保持更新,敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取第一手AI相关知识。
本文为专知内容组原创内容,未经允许不得转载,如需转载请发送邮件至fangquanyi@gmail.com 或 联系微信专知小助手(Rancho_Fang)
特别提示-专知行人重识别主题:
请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录,顶端搜索“行人重识别” 主题,查看评论获得专知荟萃全集知识等资料,直接PC端访问体验更佳!如下图所示~
此外,请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知),
后台回复“行人重识别”或者“PREI” 就可以在手机端获取专知行人重识别知识资料查看链接地址,直接打开荟萃资料的链接地址~~
专知荟萃知识资料全集获取(关注本公众号-专知,获取下载链接),请查看:
【专知荟萃】人工智能领域25个主题知识资料全集(入门/进阶/论文/综述/视频/专家等)
请扫一扫如下二维码关注我们的公众号,获取人工智能的专业知识!同时请加专知小助手微信(Rancho_Fang),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~
点击“阅读原文”,使用专知!