【专知荟萃26】行人重识别 Person Re-identification知识资料全集(入门/进阶/论文/综述/代码,附查看)

2017 年 12 月 10 日 专知 专知内容组

点击上方“专知”关注获取专业AI知识!

【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢!专知为大家呈送专知主题荟萃知识资料大全集荟萃 (入门/进阶/综述/视频/代码/专家等),请大家查看!专知访问www.zhuanzhi.ai,  或关注微信公众号后台回复" 专知"进入专知,搜索感兴趣主题查看。此外,我们也提供该文网页桌面手机端(www.zhuanzhi.ai)完整访问,可直接点击访问收录链接地址,以及pdf版下载链接,请文章末尾查看!此为初始版本,请大家指正补充,欢迎在后台留言!欢迎大家转发分享~


行人重识别 Person Re-identification / Person Retrieval 专知荟萃

  • 行人重识别 Person Re-identification / Person Retrieval 专知荟萃

  • 入门学习

  • 进阶论文及代码

    • Person Re-identification / Person Retrieval

    • Person Search

    • Re-ID with GAN

    • Vehicle Re-ID

    • Deep Metric Learning

    • Re-ID with Attributes Prediction

    • Video-based Person Re-Identification

    • Re-ranking

  • 实战项目

  • 教程

  • 综述

  • 数据集

    • 图像数据集

    • Attribute相关数据集

    • 视频相关数据集

    • NLP相关数据集

  • 领域专家


入门学习

  1. 行人重识别综述

    • [http://www.jianshu.com/p/98cc04cca0ae?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation\]

  2. 基于深度学习的Person Re-ID(综述)

    • [http://blog.csdn.net/linolzhang/article/details/71075756]

  3. 郑哲东 -Deep-ReID:行人重识别的深度学习方法

    • PPT:[https://www.slideshare.net/ZhedongZheng1/deep-reid]

    • 视频:[http://www.bilibili.com/video/av13796843/]

  4. 【行人识别】Deep Transfer Learning for Person Re-identification

    • [http://blog.csdn.net/shenxiaolu1984/article/details/53607268]

  5. 知乎专栏:行人重识别 [https://zhuanlan.zhihu.com/personReid]

    • 行人重识别综述:从哈利波特地图说起

    • 行人再识别中的迁移学习:图像风格转换(Learning via Translation)

    • 行人对齐+重识别网络

    • SVDNet for Pedestrian Retrieval:CNN到底认为哪个投影方向是重要的?

    • 用GAN生成的图像做训练?Yes!

    • 2017 ICCV 行人检索/重识别 接受论文汇总

    • 从人脸识别 到 行人重识别,下一个风口

  6. GAN(生成式对抗网络)的研究现状,以及在行人重识别领域的应用前景?

    • [https://www.zhihu.com/question/53001881/answer/170077548]

  7. Re-id Resources

    • [https://wangzwhu.github.io/home/re_id_resources.html\]

  8. 行人再识别(行人重识别)【包含与行人检测的对比】

    • [http://blog.csdn.net/liuqinglong110/article/details/41699861]

  9.  行人重识别综述(Person Re-identification: Past, Present and Future)

    • [http://blog.csdn.net/auto1993/article/details/74091803]


进阶论文及代码

Person Re-identification / Person Retrieval

  1. DeepReID: Deep Filter Pairing Neural Network for Person Re-Identification

    • intro: CVPR 2014

    • paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf]

  2. An Improved Deep Learning Architecture for Person Re-Identification

    • intro: CVPR 2015

    • paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ahmed_An_Improved_Deep_2015_CVPR_paper.pdf]

    • github: [https://github.com/Ning-Ding/Implementation-CVPR2015-CNN-for-ReID]

  3. Deep Ranking for Person Re-identification via Joint Representation Learning

    • intro: IEEE Transactions on Image Processing [TIP], 2016

    • arxiv: [https://arxiv.org/abs/1505.06821]

  4. PersonNet: Person Re-identification with Deep Convolutional Neural Networks

    • arxiv: [http://arxiv.org/abs/1601.07255]

  5. Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification

    • intro: CVPR 2016

    • arxiv: [https://arxiv.org/abs/1604.07528]

    • github: [https://github.com/Cysu/dgd_person_reid]

  6. Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function

    • intro: CVPR 2016

    • paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Cheng_Person_Re-Identification_by_CVPR_2016_paper.pdf]

  7. End-to-End Comparative Attention Networks for Person Re-identification

    • [https://arxiv.org/abs/1606.04404]

  8. A Multi-task Deep Network for Person Re-identification

    • arxiv: [http://arxiv.org/abs/1607.05369]

  9. Gated Siamese Convolutional Neural Network Architecture for Human Re-Identification

    • arxiv: [http://arxiv.org/abs/1607.08378]

  10. A Siamese Long Short-Term Memory Architecture for Human Re-Identification

    • arxiv: [http://arxiv.org/abs/1607.08381]

  11. Gated Siamese Convolutional Neural Network Architecture for Human Re-Identification

    • arxiv: [https://arxiv.org/abs/1607.08378]

  12. Person Re-identification: Past, Present and Future

    • [https://arxiv.org/abs/1610.02984]

  13. Deep Learning Prototype Domains for Person Re-Identification

    • arxiv: [https://arxiv.org/abs/1610.05047]

  14. Deep Transfer Learning for Person Re-identification

    • arxiv: [https://arxiv.org/abs/1611.05244]

  15. A Discriminatively Learned CNN Embedding for Person Re-identification

    • arxiv: [https://arxiv.org/abs/1611.05666]

    • github[MatConvnet]: [https://github.com/layumi/2016_person_re-ID]

  16. Structured Deep Hashing with Convolutional Neural Networks for Fast Person Re-identification

    • arxiv: [https://arxiv.org/abs/1702.04179]

  17. In Defense of the Triplet Loss for Person Re-Identification

    • arxiv: [https://arxiv.org/abs/1703.07737]

    • github[Theano]: [https://github.com/VisualComputingInstitute/triplet-reid]

  18. Beyond triplet loss: a deep quadruplet network for person re-identification

    • intro: CVPR 2017

    • arxiv: [https://arxiv.org/abs/1704.01719]

  19. Part-based Deep Hashing for Large-scale Person Re-identification

    • intro: IEEE Transactions on Image Processing, 2017

    • arxiv: [https://arxiv.org/abs/1705.02145]

  20. Deep Person Re-Identification with Improved Embedding

    • [https://arxiv.org/abs/1705.03332]

  21. Towards a Principled Integration of Multi-Camera Re-Identification and Tracking through Optimal Bayes Filters

    • arxiv: [https://arxiv.org/abs/1705.04608]

    • github: [https://github.com/VisualComputingInstitute/towards-reid-tracking]

  22. Person Re-Identification by Deep Joint Learning of Multi-Loss Classification

    • intro: IJCAI 2017

    • arxiv: [https://arxiv.org/abs/1705.04724]

  23. Attention-based Natural Language Person Retrieval

    • intro: CVPR 2017 Workshop [vision meets cognition]

    • keywords: Bidirectional Long Short- Term Memory [BLSTM]

    • arxiv: [https://arxiv.org/abs/1705.08923]

  24. Unsupervised Person Re-identification: Clustering and Fine-tuning

    • arxiv: [https://arxiv.org/abs/1705.10444]

    • github: [https://github.com/hehefan/Unsupervised-Person-Re-identification-Clustering-and-Fine-tuning]

  25. Deep Representation Learning with Part Loss for Person Re-Identification

    • [https://arxiv.org/abs/1707.00798]

  26. Pedestrian Alignment Network for Large-scale Person Re-identification

    • [https://raw.githubusercontent.com/layumi/Pedestrian_Alignment/master/fig2.jpg]

    • arxiv: [https://arxiv.org/abs/1707.00408]

    • github: [https://github.com/layumi/Pedestrian_Alignment]

  27. Deep Reinforcement Learning Attention Selection for Person Re-Identification

    • [https://arxiv.org/abs/1707.02785]

  28. Learning Efficient Image Representation for Person Re-Identification

    • [https://arxiv.org/abs/1707.02319]

  29. Person Re-identification Using Visual Attention

    • intro: ICIP 2017

    • arxiv: [https://arxiv.org/abs/1707.07336]

  30. Deeply-Learned Part-Aligned Representations for Person Re-Identification

    • intro: ICCV 2017

    • arxiv: [https://arxiv.org/abs/1707.07256]

  31. What-and-Where to Match: Deep Spatially Multiplicative Integration Networks for Person Re-identification

    • [https://arxiv.org/abs/1707.07074]

  32. Deep Feature Learning via Structured Graph Laplacian Embedding for Person Re-Identification

    • [https://arxiv.org/abs/1707.07791]

  33. Divide and Fuse: A Re-ranking Approach for Person Re-identification

    • intro: BMVC 2017

    • arxiv: [https://arxiv.org/abs/1708.04169]

  34. Large Margin Learning in Set to Set Similarity Comparison for Person Re-identification

    • intro: IEEE Transactions on Multimedia

    • arxiv: [https://arxiv.org/abs/1708.05512]

  35. Multi-scale Deep Learning Architectures for Person Re-identification

    • intro: ICCV 2017

    • arxiv: [https://arxiv.org/abs/1709.05165]

  36. Pose-driven Deep Convolutional Model for Person Re-identification

    • [https://arxiv.org/abs/1709.08325]

  37. HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis

    • intro: ICCV 2017. CUHK & SenseTime,

    • arxiv: [https://arxiv.org/abs/1709.09930]

    • github: [https://github.com/xh-liu/HydraPlus-Net]

  38. Person Re-Identification with Vision and Language

    • [https://arxiv.org/abs/1710.01202]

  39. Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification

    • [https://arxiv.org/abs/1710.00478]

  40. Learning Deep Context-aware Features over Body and Latent Parts for Person Re-identification

    • intro: CVPR 2017. CASIA

    • keywords: Multi-Scale Context-Aware Network [MSCAN]

    • arxiv: [https://arxiv.org/abs/1710.06555]

  41. Pseudo-positive regularization for deep person re-identification

    • [https://arxiv.org/abs/1711.06500]

  42. Let Features Decide for Themselves: Feature Mask Network for Person Re-identification

    • keywords: Feature Mask Network [FMN]

    • arxiv: [https://arxiv.org/abs/1711.07155]

  43. Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification

    • [https://arxiv.org/abs/1711.07027]

  44. AlignedReID: Surpassing Human-Level Performance in Person Re-Identification

    • intro: Megvii, Inc & Zhejiang University

    • arxiv: [https://arxiv.org/abs/1711.08184]

    • evaluation website: [Market1501]: [http://reid-challenge.megvii.com/]

    • evaluation website: [CUHK03]: [http://reid-challenge.megvii.com/cuhk03]

  45. Region-based Quality Estimation Network for Large-scale Person Re-identification

    • intro: AAAI 2018

    • arxiv: [https://arxiv.org/abs/1711.08766]

  46. Deep-Person: Learning Discriminative Deep Features for Person Re-Identification

    • [https://arxiv.org/abs/1711.10658]

  47. A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking

    • arxiv: [https://arxiv.org/abs/1711.10378]

    • github: [https://github.com/pse-ecn/pose-sensitive-embedding]


Person Search

  1. Joint Detection and Identification Feature Learning for Person Search

    • intro: CVPR 2017

    • keywords: Online Instance Matching OIM loss function

    • homepage[dataset+code]:[http://www.ee.cuhk.edu.hk/~xgwang/PS/dataset.html]

    • arxiv: [https://arxiv.org/abs/1604.01850]

    • paper: [http://www.ee.cuhk.edu.hk/~xgwang/PS/paper.pdf]

    • github[official. Caffe]: [https://github.com/ShuangLI59/person_search]

  2. Person Re-identification in the Wild

    • intro: CVPR 2017 spotlight

    • keywords: PRW dataset

    • project page: [http://www.liangzheng.com.cn/Project/project_prw.html]

    • arxiv: [https://arxiv.org/abs/1604.02531]

    • github: [https://github.com/liangzheng06/PRW-baseline]

  3. IAN: The Individual Aggregation Network for Person Search

    • [https://arxiv.org/abs/1705.05552]

  4. Neural Person Search Machines

    • intro: ICCV 2017

    • arxiv: [https://arxiv.org/abs/1707.06777]


Re-ID with GAN

  1. Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro

    • intro: ICCV 2017

    • arxiv: [https://arxiv.org/abs/1701.07717]

    • github: [https://github.com/layumi/Person-reID_GAN]

  2. Person Transfer GAN to Bridge Domain Gap for Person Re-Identification

    • [https://arxiv.org/abs/1711.08565]


Vehicle Re-ID

  1. Learning Deep Neural Networks for Vehicle Re-ID with Visual-spatio-temporal Path Proposals

    • intro: ICCV 2017

    • arxiv: [https://arxiv.org/abs/1708.03918]


Deep Metric Learning

  1. Deep Metric Learning for Person Re-Identification

    • intro: ICPR 2014

    • paper: [http://www.cbsr.ia.ac.cn/users/zlei/papers/ICPR2014/Yi-ICPR-14.pdf]

  2. Deep Metric Learning for Practical Person Re-Identification

    • [https://arxiv.org/abs/1407.4979]

  3. Constrained Deep Metric Learning for Person Re-identification

    • [https://arxiv.org/abs/1511.07545]

  4. DarkRank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer

    • intro: TuSimple

    • keywords: pedestrian re-identification

    • arxiv: [https://arxiv.org/abs/1707.01220]


Re-ID with Attributes Prediction

  1. Deep Attributes Driven Multi-Camera Person Re-identification

    • intro: ECCV 2016

    • arxiv: [https://arxiv.org/abs/1605.03259]

  2. Improving Person Re-identification by Attribute and Identity Learning

    • [https://arxiv.org/abs/1703.07220]


Video-based Person Re-Identification

  1. Recurrent Convolutional Network for Video-based Person Re-Identification

    • intro: CVPR 2016

    • paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/McLaughlin_Recurrent_Convolutional_Network_CVPR_2016_paper.pdf]

    • github: [https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID]

  2. Deep Recurrent Convolutional Networks for Video-based Person Re-identification: An End-to-End Approach

    • [https://arxiv.org/abs/1606.01609]

  3. Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person Re-Identification

    • intro: ICCV 2017

    • arxiv: [https://arxiv.org/abs/1708.02286]

  4. Three-Stream Convolutional Networks for Video-based Person Re-Identification

    • [https://arxiv.org/abs/1712.01652]


Re-ranking

  1. Re-ranking Person Re-identification with k-reciprocal Encoding

    • intro: CVPR 2017

    • arxiv: [https://arxiv.org/abs/1701.08398]

    • github: [https://github.com/zhunzhong07/person-re-ranking]


实战项目

  1. Open-ReID: Open source person re-identification library in python

    • intro: Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different datasets, a full set of models and evaluation metrics, as well as examples to reproduce [near] state-of-the-art results.

    • project page: [https://cysu.github.io/open-reid/]

    • github[PyTorch]: [https://github.com/Cysu/open-reid]

    • examples: [https://cysu.github.io/open-reid/examples/training_id.html]

    • benchmarks: [https://cysu.github.io/open-reid/examples/benchmarks.html]

  2. caffe-PersonReID

    • intro: Person Re-Identification: Multi-Task Deep CNN with Triplet Loss

    • gtihub: [https://github.com/agjayant/caffe-Person-ReID]

  3. DukeMTMC-reID_baseline Matlab

    • [https://github.com/layumi/DukeMTMC-reID_baseline]

  4. Code for IDE baseline on Market-1501

    • [https://github.com/zhunzhong07/IDE-baseline-Market-1501]


教程

  1. 1st Workshop on Target Re-Identification and Multi-Target Multi-Camera Tracking

    • [https://reid-mct.github.io/]

  2. 郑哲东 -Deep-ReID:行人重识别的深度学习方法

    • PPT:[https://www.slideshare.net/ZhedongZheng1/deep-reid]

    • 视频:[http://www.bilibili.com/video/av13796843/]

  3. Person Identification in Large Scale Camera Networks Wei-Shi Zheng (郑伟诗)

    • [http://isee.sysu.edu.cn/~zhwshi/Research/ADL-OPEN.pdf\]

  4. Person Re-Identification: Theory and Best Practice

    • [http://www.micc.unifi.it/reid-tutorial/slides/]


综述

  1. Person Re-identification: Past, Present and Future Liang Zheng, Yi Yang, Alexander G. Hauptmann

    • [https://arxiv.org/abs/1610.02984]

  2. Person Re-Identification Book

    • [https://link.springer.com/book/10.1007/978-1-4471-6296-4]

  3. A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets

    • [http://lanl.arxiv.org/abs/1605.09653]

  4. People reidentification in surveillance and forensics: A survey

    • [https://dl.acm.org/citation.cfm?doid=2543581.2543596]


数据集

  1. Re-ID 数据集汇总

    • [https://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/projectpages/reiddataset.html]


图像数据集

  1. Market-1501 Dataset 751个人,27种属性,一共约三万张图像(一人多图)

    • [http://www.liangzheng.org/Project/project_reid.html\]

    • Code for IDE baseline on Market-1501 :[https://github.com/zhunzhong07/IDE-baseline-Market-1501]

  2.  DukeMTMC-reID DukeMTMC数据集的行人重识别子集,原始数据集地址(http://vision.cs.duke.edu/DukeMTMC/) ,为行人跟踪数据集。原始数据集包含了85分钟的高分辨率视频,采集自8个不同的摄像头。并且提供了人工标注的bounding box。最终,DukeMTMC-reID 包含了 16,522张训练图片(来自702个人), 2,228个查询图像(来自另外的702个人),以及 17,661 张图像的搜索库(gallery)。并提供切割后的图像供下载。

    • [https://github.com/layumi/DukeMTMC-reID_evaluation\]

  3. CUHK01, 02, 03

    • [http://www.ee.cuhk.edu.hk/~rzhao/\]


Attribute相关数据集

  1. RAP

    • [https://link.zhihu.com/?target=http%3A//rap.idealtest.org/]

  2. Attribute for Market-1501and DukeMTMC_reID

    • [https://link.zhihu.com/?target=https%3A//vana77.github.io/]


视频相关数据集

  1. Mars

    • [http://liangzheng.org/Project/project_mars.html]

  2. PRID2011

    • [https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/]


NLP相关数据集:

  1. 自然语言搜图像

    • [http://xiaotong.me/static/projects/person-search-language/dataset.html]

  2. 自然语言搜索行人所在视频

    • [http://www.mi.t.u-tokyo.ac.jp/projects/person_search]


领域专家

  1. Shaogang Gong -[http://www.eecs.qmul.ac.uk/~sgg/\]

  2. Xiaogang Wang

    • [http://www.ee.cuhk.edu.hk/~xgwang/\]

  3. Weishi Zheng

    • [https://sites.google.com/site/sunnyweishi/]

  4. Liang Zheng

    • [http://www.liangzheng.com.cn/]

  5. Chen Change Loy

    • [https://staff.ie.cuhk.edu.hk/~ccloy/\]

  6. Qi Tian

    • [http://www.cs.utsa.edu/~qitian/tian-publication-year.html\]

  7. Shengcai Liao

    • [http://www.cbsr.ia.ac.cn/users/scliao/]

  8. Rui Zhao

    • [http://www.ee.cuhk.edu.hk/~rzhao/\]

  9. Yang Yang

    • [http://www.cbsr.ia.ac.cn/users/yyang/main.htm]

  10. Ling Shao

    • [http://lshao.staff.shef.ac.uk/]

  11. Ziyan Wu

    • [http://wuziyan.com/]

  12. DaPeng Chen

    • [http://gr.xjtu.edu.cn/web/dapengchen/home]

  13. Horst Bischof

    • [https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid450s]

  14. Niki Martinel

    • [http://users.dimi.uniud.it/~niki.martinel/\]

  15. Liang Lin

    • [http://hcp.sysu.edu.cn/home/]

  16. Le An

    • [http://auto.hust.edu.cn/index.php?a=shows&catid=28&id=134]

  17. Xiang Bai

    • [http://mc.eistar.net/~xbai/index.html\]

  18. Xiaoyuan Jing

    • [http://mla.whu.edu.cn/plus/list.php?tid=2]

  19. Fei Xiong

    • [http://robustsystems.coe.neu.edu/?q=content/research]

  20. DaPeng Chen

    • [http://gr.xjtu.edu.cn/web/dapengchen/home]


初步版本,水平有限,有错误或者不完善的地方,欢迎大家提建议和补充,会一直保持更新,敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取第一手AI相关知识。

本文为专知内容组原创内容,未经允许不得转载,如需转载请发送邮件至fangquanyi@gmail.com 或 联系微信专知小助手(Rancho_Fang)

特别提示-专知行人重识别主题:

请PC登录www.zhuanzhi.ai或者点击阅读原文注册登录,顶端搜索“行人重识别” 主题,查看评论获得专知荟萃全集知识等资料,直接PC端访问体验更佳!如下图所示~




此外,请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知),

  • 后台回复“行人重识别”或者“PREI” 就可以在手机端获取专知行人重识别知识资料查看链接地址,直接打开荟萃资料的链接地址~~

专知荟萃知识资料全集获取(关注本公众号-专知,获取下载链接),请查看:

【专知荟萃】人工智能领域25个主题知识资料全集(入门/进阶/论文/综述/视频/专家等)


请扫一扫如下二维码关注我们的公众号,获取人工智能的专业知识!同时请加专知小助手微信(Rancho_Fang),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~



点击“阅读原文”,使用专知

登录查看更多
34

相关内容

行人重识别(Person re-identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补目前固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合,可广泛应用于智能视频监控、智能安保等领域。 由于不同摄像设备之间的差异,同时行人兼具刚性和柔性的特性 ,外观易受穿着、尺

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【DeepMind推荐】居家学习的人工智能干货资源大全集
专知会员服务
107+阅读 · 2020年6月27日
最新《自动微分手册》77页pdf
专知会员服务
100+阅读 · 2020年6月6日
最新《深度学习行人重识别》综述论文,24页pdf
专知会员服务
80+阅读 · 2020年5月5日
八篇 ICCV 2019 【图神经网络(GNN)+CV】相关论文
专知会员服务
29+阅读 · 2020年1月10日
【开源书】PyTorch深度学习起步,零基础入门(附pdf下载)
专知会员服务
110+阅读 · 2019年10月26日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Adversarial Metric Attack for Person Re-identification
Arxiv
4+阅读 · 2018年5月4日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关VIP内容
【DeepMind推荐】居家学习的人工智能干货资源大全集
专知会员服务
107+阅读 · 2020年6月27日
最新《自动微分手册》77页pdf
专知会员服务
100+阅读 · 2020年6月6日
最新《深度学习行人重识别》综述论文,24页pdf
专知会员服务
80+阅读 · 2020年5月5日
八篇 ICCV 2019 【图神经网络(GNN)+CV】相关论文
专知会员服务
29+阅读 · 2020年1月10日
【开源书】PyTorch深度学习起步,零基础入门(附pdf下载)
专知会员服务
110+阅读 · 2019年10月26日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
相关资讯
Top
微信扫码咨询专知VIP会员