Motivation: Several accurate deep learning models have been proposed to predict drug-target affinity (DTA). However, all of these models are black box hence are difficult to interpret and verify its result, and thus risking acceptance. Explanation is necessary to allow the DTA model more trustworthy. Explanation with counterfactual provides human-understandable examples. Most counterfactual explanation methods only operate on single input data, which are in tabular or continuous forms. In contrast, the DTA model has two discrete inputs. It is challenging for the counterfactual generation framework to optimize both discrete inputs at the same time. Results: We propose a multi-agent reinforcement learning framework, Multi-Agent Counterfactual Drug-target binding Affinity (MACDA), to generate counterfactual explanations for the drug-protein complex. Our proposed framework provides human-interpretable counterfactual instances while optimizing both the input drug and target for counterfactual generation at the same time. The result on the Davis dataset shows the advantages of the proposed MACDA framework compared with previous works.
翻译:动机:提出了几种准确的深层次学习模型,以预测药物目标的亲和性(DTA),但是,所有这些模型都是黑盒,因此很难解释和核实其结果,因此难以被接受。解释对于使DTA模型更加可信是必要的。用反事实解释提供了人类可以理解的例子。大多数反事实解释方法仅使用单一输入数据,这些数据以表格形式或连续形式出现。相比之下,DTA模型有两个独立的输入。反事实生成框架同时优化两种离散投入是困难的。结果:我们提议了一个多剂强化学习框架,即多剂反现实药物目标结合的亲和性(MACDA),以便为药物-蛋白综合体产生反事实解释。我们提议的框架提供了人与人相互作用的反事实实例,同时优化输入药物和反事实生成的目标。Davis数据集的结果表明,拟议的MACDA框架与以前的工作相比具有优势。