Spark SQL has been widely deployed in industry but it is challenging to tune its performance. Recent studies try to employ machine learning (ML) to solve this problem, but suffer from two drawbacks. First, it takes a long time (high overhead) to collect training samples. Second, the optimal configuration for one input data size of the same application might not be optimal for others. To address these issues, we propose a novel Bayesian Optimization (BO) based approach named LOCAT to automatically tune the configurations of Spark SQL applications online. LOCAT innovates three techniques. The first technique, named QCSA, eliminates the configuration-insensitive queries by Query Configuration Sensitivity Analysis (QCSA) when collecting training samples. The second technique, dubbed DAGP, is a Datasize-Aware Gaussian Process (DAGP) which models the performance of an application as a distribution of functions of configuration parameters as well as input data size. The third technique, called IICP, Identifies Important Configuration Parameters (IICP) with respect to performance and only tunes the important ones. As such, LOCAT can tune the configurations of a Spark SQL application with low overhead and adapt to different input data sizes. We employ Spark SQL applications from benchmark suites TPC-DS, TPC-H, and HiBench running on two significantly different clusters, a four-node ARM cluster and an eight-node x86 cluster, to evaluate LOCAT. The experimental results on the ARM cluster show that LOCAT accelerates the optimization procedures of the state-of-the-art approaches by at least 4.1x and up to 9.7x; moreover, LOCAT improves the application performance by at least 1.9x and up to 2.4x. On the x86 cluster, LOCAT shows similar results to those on the ARM cluster.


翻译:Spark SQL 已经在行业中广泛部署 SQL 。 最近的研究试图利用机器学习(ML) 解决这个问题,但有两个缺点。 首先, 收集培训样本需要很长的时间( 高管理) 。 第二, 同一应用程序的一个输入数据大小的最佳配置可能不是其他应用程序的最佳配置。 为了解决这些问题, 我们建议采用名为 LOCAT (BO) 的新型Bayesian Optim化(BO) 方法, 自动调整 Spark SQL 应用程序的配置。 LOCAT 创新了三种技术。 第一种技术, 名为 QCSA (QCSA), 消除了Query 配置敏感度分析(QCSA) 在收集培训样本时的配置不敏感度查询。 第二种技术, 调制DGP( ), 是一个数据缩略图- Award Gauss 进程(DGP), 将应用程序的性能作为配置参数的分布以及输入数据大小。 第三个技术, 名为 IICP, 识别重要配置参数(IICP), 有关业绩, 只标定了TROC- RodL 程序, 运行S- RDS 。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Literature Review on Serverless Computing
Arxiv
0+阅读 · 2022年7月6日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员