Occupancy modeling is a common approach to assess spatial and temporal species distribution patterns, while explicitly accounting for measurement errors common in detection-nondetection data. Numerous extensions of the basic single species occupancy model exist to address dynamics, multiple species or states, interactions, false positive errors, autocorrelation, and to integrate multiple data sources. However, development of specialized and computationally efficient software to fit spatial models to large data sets is scarce or absent. We introduce the spOccupancy R package designed to fit single-species, multi-species, and integrated spatially-explicit occupancy models. Using a Bayesian framework, we leverage P\'olya-Gamma data augmentation and Nearest Neighbor Gaussian Processes to ensure models are computationally efficient for potentially massive data sets. spOccupancy provides user-friendly functions for data simulation, model fitting, model validation (by posterior predictive checks), model comparison (using information criteria and k-fold cross-validation), and out-of-sample prediction. We illustrate the package's functionality via a vignette, simulated data analysis, and two bird case studies, in which we estimate occurrence of the Black-throated Green Warbler (Setophaga virens) across the eastern USA and species richness of a foliage-gleaning bird community in the Hubbard Brook Experimental Forest in New Hampshire, USA. The spOccupancy package provides a user-friendly approach to fit a variety of single and multi-species occupancy models, making it straightforward to address detection biases and spatial autocorrelation in species distribution models even for large data sets.


翻译:观察模型是评估空间和时间物种分布模式的共同方法,同时明确计算探测-不探测数据中常见的测量误差。基本单一物种占用模型有许多扩展,以解决动态、多种物种或国家、互动、虚假正误、自动反差、自动反差和整合多种数据源。然而,开发专门和计算高效软件以适应大型数据集的空间模型是稀缺或不存在的。我们引入了用于适合单一物种、多物种和综合空间扩展占用模型的 Spopacy R 软件包。我们利用了Bayesian 框架,利用了 P\'olya-Gamma 数据增强和 Neest Neighbor Gaussian 进程,以确保模型在计算上对潜在大规模数据集具有效率。 巨型软件提供方便的功能用于数据模拟、模型安装、模型模拟、模型验证(通过事后预测检查)、模型比较(使用信息标准和K-倍的丰富鸟类使用方法)和综合空间覆盖模型模型。我们通过Bay-Orightal-seral 的系统模型,通过一个图像序列、模拟的循环分析、模拟的系统-AA级循环的循环的循环数据以及两个案例的循环分析提供。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员