Modern inelastic material model formulations rely on the use of tensor-valued internal variables. When inelastic phenomena include softening, simulations of the former are prone to localization. Thus, an accurate regularization of the tensor-valued internal variables is essential to obtain physically correct results. Here, we focus on the regularization of anisotropic damage at finite strains. Thus, a flexible anisotropic damage model with isotropic, kinematic, and distortional hardening is equipped with three gradient-extensions using a full and two reduced regularizations of the damage tensor. Theoretical and numerical comparisons of the three gradient-extensions yield excellent agreement between the full and the reduced regularization based on a volumetric-deviatoric regularization using only two nonlocal degrees of freedom.
翻译:暂无翻译