We examine and compare the predictive properties of classes of ensemble methods, including the recently developed Bayesian predictive synthesis (BPS). We develop a novel strategy based on stochastic processes, where the predictive processes are expressed as stochastic differential equations, evaluated using It\^{o}'s lemma. Using this strategy, we identify two main classes of ensemble methods: linear combination and non-linear synthesis, and show that a subclass of BPS is the latter. With regard to expected squared forecast error, we identify the conditions and mechanism for which non-linear synthesis improves over linear combinations; conditions that are commonly met in real world applications. We further show that a specific form of non-linear BPS (as in McAlinn and West, 2019) produces exact minimax predictive distributions for Kullback-Leibler risk and, under certain conditions, quadratic risk. A finite sample simulation study is presented to illustrate our results.
翻译:我们研究并比较各类混合方法的预测特性,包括最近开发的贝叶斯预测合成(BPS),我们根据随机过程制定了新的战略,预测过程以随机差异方程式表示,使用It ⁇ o}的 Lemma 进行评估。我们利用这一战略确定了两种主要组合方法:线性组合和非线性合成,并表明BPS的子类是后者。关于预期的正方形预测错误,我们确定了非线性合成比线性组合改进的条件和机制;现实世界应用中通常满足的条件。我们进一步展示了非线性BPS的具体形式(如McAlinn和West,2019年,为Kullback-Lebeller的风险和在某些情况下的四重风险产生精确的微缩式预测分布。我们介绍了一个有限的抽样模拟研究,以说明我们的结果。