Code-switching is a common phenomenon among people with diverse lingual background and is widely used on the internet for communication purposes. In this paper, we present a Recurrent Neural Network combined with the Attention Model for Language Identification in Code-Switched Data in English and low resource Roman Urdu. The attention model enables the architecture to learn the important features of the languages hence classifying the code switched data. We demonstrated our approach by comparing the results with state of the art models i.e. Hidden Markov Models, Conditional Random Field and Bidirectional LSTM. The models evaluation, using confusion matrix metrics, showed that the attention mechanism provides improved the precision and accuracy as compared to the other models.


翻译:代码转换是具有多种语言背景的人的一种常见现象,在互联网上广泛用于通信目的。在本文中,我们用英语和低资源罗曼乌尔都语推出了一个经常性神经网络,并结合了代码转换数据中语言识别注意模型。关注模型使结构能够了解语言的重要特征,从而对代码转换数据进行分类。我们展示了我们的方法,将结果与艺术模型(即隐藏的马尔科夫模型、有条件随机场和双向LSTM)的状况进行比较。模型评估利用混乱矩阵指标显示,关注机制与其他模型相比提高了准确性和准确性。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
从 Encoder 到 Decoder 实现 Seq2Seq 模型
AI研习社
10+阅读 · 2018年2月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
VIP会员
相关资讯
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
从 Encoder 到 Decoder 实现 Seq2Seq 模型
AI研习社
10+阅读 · 2018年2月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员