Inspired by the recent PointHop classification method, an unsupervised 3D point cloud registration method, called R-PointHop, is proposed in this work. R-PointHop first determines a local reference frame (LRF) for every point using its nearest neighbors and finds its local attributes. Next, R-PointHop obtains local-to-global hierarchical features by point downsampling, neighborhood expansion, attribute construction and dimensionality reduction steps. Thus, we can build the correspondence of points in the hierarchical feature space using the nearest neighbor rule. Afterwards, a subset of salient points of good correspondence is selected to estimate the 3D transformation. The use of LRF allows for hierarchical features of points to be invariant with respect to rotation and translation, thus making R-PointHop more robust in building point correspondence even when rotation angles are large. Experiments are conducted on the 3DMatch, ModelNet40 and the Stanford Bunny dataset, which demonstrate the effectiveness of R-PointHop on the 3D point cloud registration task. R-PointHop is a green and accurate solution since its model size and training time are smaller than those of deep learning methods by an order of magnitude while its registration errors are smaller. Our codes are available on GitHub.


翻译:受最近PointHop分类方法的启发,在此工作中建议采用名为 R-PointHop 的不受监督的 3D 点云登记方法。 R- PointHop 首先决定使用近邻的每个点的本地参考框架( LRF ), 并找到其本地属性 。 其次, R- PointHop 通过点下取样、 邻里扩张、 属性构建 和 维度 减少 步骤, 获得本地到全球的等级特征 。 因此, 我们可以使用最近的邻居规则, 建立等级空间的分级点的对应点 。 之后, 选择了一组好通信的突出点来估计 3D 转换 。 使用 LRF 允许在旋转和翻译方面各点的等级性特征, 从而使得 R- PointHop 在建设点通信时, 即使在旋转角度较大时, 也更加坚固。 在 3DMatch、 ModelNet40 和斯坦福邦特 数据集上进行实验, 这显示了 R- PointHop 在 3D点云登记任务上的有效性 。 R- PointHop 是一个绿色和准确的解决方案解决方案, 因为其模型大小和训练时间比我们深层的编码要小。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
NeurIPS 2021丨K-Net: 迈向统一的图像分割
专知会员服务
16+阅读 · 2021年11月25日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
31+阅读 · 2021年6月12日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年6月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
8+阅读 · 2018年1月25日
VIP会员
相关资讯
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年6月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员