This paper presents a deep learning-based de-homogenization method for structural compliance minimization. By using a convolutional neural network to parameterize the mapping from a set of lamination parameters on a coarse mesh to a one-scale design on a fine mesh, we avoid solving the least square problems associated with traditional de-homogenization approaches and save time correspondingly. To train the neural network, a two-step custom loss function has been developed which ensures a periodic output field that follows the local lamination orientations. A key feature of the proposed method is that the training is carried out without any use of or reference to the underlying structural optimization problem, which renders the proposed method robust and insensitive wrt. domain size, boundary conditions, and loading. A post-processing procedure utilizing a distance transform on the output field skeleton is used to project the desired lamination widths onto the output field while ensuring a predefined minimum length-scale and volume fraction. To demonstrate that the deep learning approach has excellent generalization properties, numerical examples are shown for several different load and boundary conditions. For an appropriate choice of parameters, the de-homogenized designs perform within $7-25\%$ of the homogenization-based solution at a fraction of the computational cost. With several options for further improvements, the scheme may provide the basis for future interactive high-resolution topology optimization.
翻译:本文展示了一种深层次的基于学习的去同化方法,以尽量减少结构性合规性。 通过使用进化神经网络,将绘图从粗微网格上的一组成形参数参数参数参数参数从粗微网格的一组成形参数参数参数到精细网格的一尺度设计参数参数参数,我们避免解决与传统的去同异化方法有关的最小平方问题,并相应地节省时间。为了培训神经网络,已经开发了一个两步定制损失功能,以确保遵循当地压缩方向的定期输出字段。拟议方法的一个关键特征是,在开展培训时,不使用或参考根本的结构优化问题,使拟议方法在粗粗微网格尺寸、边界条件和加载方面变得稳健和不敏感。一个后处理程序,利用产出场骨架上的距离变异来预测理想的成形宽度,同时确保预先界定的最低长度和体积分。为了证明深学习方法具有极好的概括性,为若干不同的负荷和边界条件提供了数字实例。为了适当选择参数,在将来的以美元为根据的公式化的方法上,可以进一步进行高分辨率计算。