Deep convolutional neural networks are a powerful model class for a range of computer vision problems, but it is difficult to interpret the image filtering process they implement, given their sheer size. In this work, we introduce a method for extracting 'feature-preserving circuits' from deep CNNs, leveraging methods from saliency-based neural network pruning. These circuits are modular sub-functions, embedded within the network, containing only a subset of convolutional kernels relevant to a target feature. We compare the efficacy of 3 saliency-criteria for extracting these sparse circuits. Further, we show how 'sub-feature' circuits can be extracted, that preserve a feature's responses to particular images, dividing the feature into even sparser filtering processes. We also develop a tool for visualizing 'circuit diagrams', which render the entire image filtering process implemented by circuits in a parsable format.
翻译:深相神经网络是一系列计算机视觉问题的强大模型类, 但很难解释它们所执行的图像过滤程序, 由于其大小大小。 在此工作中, 我们引入了从深重CNN中提取“ 功能保护电路” 的方法, 利用基于显著神经网络的运行方法。 这些电路是嵌入网络中的模块子功能, 仅包含与目标特性相关的一组进化内核。 我们比较了用于提取这些稀有电路的3个显性标准的效率。 此外, 我们演示了“ 亚特性电路” 是如何被提取的, 保存一个特性对特定图像的反应, 将特性分隔为甚至稀疏过滤程序 。 我们还开发了一个“ 电路图” 的可视化工具, 使整个图像过滤过程能够以可辨格式通过电路执行 。