Markov chain Monte Carlo (MCMC) methods have not been broadly adopted in Bayesian neural networks (BNNs). This paper initially reviews the main challenges in sampling from the parameter posterior of a neural network via MCMC. Such challenges culminate to lack of convergence to the parameter posterior. Nevertheless, this paper shows that a non-converged Markov chain, generated via MCMC sampling from the parameter space of a neural network, can yield via Bayesian marginalization a valuable posterior predictive distribution of the output of the neural network. Classification examples based on multilayer perceptrons showcase highly accurate posterior predictive distributions. The postulate of limited scope for MCMC developments in BNNs is partially valid; an asymptotically exact parameter posterior seems less plausible, yet an accurate posterior predictive distribution is a tenable research avenue.


翻译:Bayesian神经网络没有广泛采用Markov链条Monte Carlo(MMC)方法,本文首先审查通过MCMC从神经网络参数后部取样的主要挑战,最终导致与参数后部没有趋同。然而,本文表明,通过MCMC从神经网络参数空间取样产生的非趋同的Markov链条可以通过Bayesian边缘化产生一个宝贵的神经网络输出的后后部预测分布。基于多层透镜的分类示例显示了高度精确的后部预测分布。对BNons的MC发展范围有限的假设是部分有效的;一个无症状精确的参数后部似乎不太可信,但准确的后部预测分布是一个可靠的研究途径。

0
下载
关闭预览

相关内容

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
浅谈贝叶斯和MCMC
AI100
14+阅读 · 2018年6月11日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月11日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
浅谈贝叶斯和MCMC
AI100
14+阅读 · 2018年6月11日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员