Parallel Imaging (PI) is one of the most im-portant and successful developments in accelerating magnetic resonance imaging (MRI). Recently deep learning PI has emerged as an effective technique to accelerate MRI. Nevertheless, most approaches have so far been based image domain. In this work, we propose to explore the k-space domain via robust generative modeling for flexible PI reconstruction, coined weight-k-space generative model (WKGM). Specifically, WKGM is a generalized k-space domain model, where the k-space weighting technology and high-dimensional space strategy are efficiently incorporated for score-based generative model training, resulting in good and robust reconstruction. In addition, WKGM is flexible and thus can synergistically combine various traditional k-space PI models, generating learning-based priors to produce high-fidelity reconstructions. Experimental results on datasets with varying sampling patterns and acceleration factors demonstrate that WKGM can attain state-of-the-art reconstruction results under the well-learned k-space generative prior.
翻译:在加速磁共振成像(MRI)方面,平行成像(PI)是最短的、最成功的发展。最近深入学习的PI已成为加速磁共振成像(MRI)的一种有效技术。然而,迄今为止,大多数方法都是基于图像域。在这项工作中,我们提议通过为灵活的PI重建、硬质重量-k-空间基因化模型(WKGM)建立强有力的基因模型模型,探索k-空间域。具体地说,WKGM是一个通用的k-空间域模型,在这种模型中,K-空间加权技术和高维空间战略被有效地纳入基于得分的基因化模型培训,从而导致良好和有力的重建。此外,WKGM具有灵活性,因此可以协同地将各种传统的k-空间PI模型结合起来,从而产生基于学习的先期,从而产生高不成熟的重建。关于具有不同取样模式和加速因素的数据集的实验结果表明,WKGM可以在先前的深层次K-空间基因化下取得最先进的重建结果。