We present a unified deep learning framework for user identity recognition and imagined action recognition, based on electroencephalography (EEG) signals. Our solution exploits a novel phased subsampling preprocessing step as a form of data augmentation, and a mesh-to-image representation to encode the inherent local spatial relationships of multi-electrode EEG signals. The resulting image-like data is then fed to a convolutional neural network, to process the local spatial dependencies, and eventually analyzed through a Bidirectional LSTM module, to focus on temporal relationships. Our solution is compared against several methods in the state of the art, showing comparable or superior performance on different tasks. Preliminary experiments are also conducted in order to direct future works towards everyday applications relying on a reduced set of EEG electrodes.
翻译:我们提出了一个基于电子脑电图信号的用户身份识别和想象行动识别的统一深层次学习框架。我们的解决方案利用一个新型的分阶段子抽样预处理步骤作为数据增强的一种形式,以及一个网格到图像的演示来编码多电子电子电子数据信号固有的当地空间关系。由此产生的图像类数据随后被输入一个革命性神经网络,处理当地的空间依赖,并最终通过双向LSTM模块分析,以侧重于时间关系。我们的解决方案与一些先进方法相比较,显示不同任务的可比或优异性能。还进行了初步实验,以便将未来工作引导到日常应用上,依靠一套减少的EEG电极。