Precision, validity, reliability, timeliness, availability, and granularity are the desired characteristics for data and information systems. However due to the desired trait of data mutability, information systems have inherently lacked the ability to enforce data integrity without governance. A resolution to this challenge has emerged in the shape of blockchain architecture, which ensures immutability of stored information, whilst remaining in an online state. Blockchain technology achieves this through the serial attachment of set-sized parcels of data called blocks. Links (liken to a chain) between these blocks are implemented using a cryptographic seal created using mathematical functions on the data inside the blocks. Practical implementations of blockchain vary by different components, concepts, and terminologies. Researchers proposed various architectural models using different layers to implement blockchain technologies. In this paper, we investigated those layered architectures for different use cases. We identified essential layers and components for a generalised blockchain architecture. We present a novel three-tiered storage model for the purpose of logically defining and categorising blockchain as a storage technology. We envision that this generalised model will be used as a guide when referencing and building any blockchain storage solution.


翻译:精确度、有效性、可靠性、及时性、可得性和颗粒性是数据和信息系统的理想特征。然而,由于数据可变性的预期特征,信息系统本身缺乏在没有治理的情况下执行数据完整性的能力。解决这一挑战的方法是块链结构,这种结构确保存储信息不易移动,同时保持在线状态。 块链技术通过称为块块的固定尺寸数据包裹的序列附加实现这一点。这些块之间的链接(类似于链)是使用利用利用块内数据数学功能建立的加密密封来实施的。 块链的实际实施因不同组成部分、概念和术语而不同。研究人员提出了使用不同层次实施块链技术的各种建筑模型。在本文件中,我们调查了不同使用案例的分层结构。我们为一个通用的块链结构确定了基本层和组成部分。我们提出了一个新的三层储存模型,目的是对块链进行逻辑界定和分类,作为储存技术。我们设想,在查找和构建任何块链解决办法时,将使用这一通用模型作为指南。

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年9月6日
专知会员服务
59+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
96+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
3+阅读 · 2018年12月29日
VIP会员
相关VIP内容
专知会员服务
38+阅读 · 2020年9月6日
专知会员服务
59+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
96+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员