Recent applications of deep convolutional neural networks in medical imaging raise concerns about their interpretability. While most explainable deep learning applications use post hoc methods (such as GradCAM) to generate feature attribution maps, there is a new type of case-based reasoning models, namely ProtoPNet and its variants, which identify prototypes during training and compare input image patches with those prototypes. We propose the first medical prototype network (MProtoNet) to extend ProtoPNet to brain tumor classification with 3D multi-parametric magnetic resonance imaging (mpMRI) data. To address different requirements between 2D natural images and 3D mpMRIs especially in terms of localizing attention regions, a new attention module with soft masking and online-CAM loss is introduced. Soft masking helps sharpen attention maps, while online-CAM loss directly utilizes image-level labels when training the attention module. MProtoNet achieves statistically significant improvements in interpretability metrics of both correctness and localization coherence (with a best activation precision of $0.713\pm0.058$) without human-annotated labels during training, when compared with GradCAM and several ProtoPNet variants. The source code is available at https://github.com/aywi/mprotonet.
翻译:最近,在医学成像中使用深度卷积神经网络的应用引起了人们对其可解释性的担忧。虽然大多数可解释深度学习应用使用后续方法(如GradCAM)生成特征归因地图,但是有一种新的基于案例推理模型,即ProtoPNet及其变体,其在训练过程中识别原型并将输入图像路径与这些原型进行比较。我们提出了第一个医学原型网络(MProtoNet),将 ProtoPNet 扩展到使用3D多参数磁共振成像数据进行脑瘤分类。为了解决2D自然图像和3D mpMRI之间在定位注意区域方面的不同要求,引入了一种新的注意模块,其中包括软遮罩和在线CAM损失。软遮罩有助于锐化注意力地图,而在线CAM损失在训练注意模块时直接利用图像级标签。与GradCAM和几种ProtoPNet 变体相比,MProtoNet在正确性和定位一致性两个解释性指标方面均获得了统计学意义上的改善(最佳激活精度为$0.713±0.058$),并且在训练过程中不需要人工注释的标签。源代码可在https://github.com/aywi/mprotonet获得。