User-curated item lists, such as video-based playlists on Youtube and book-based lists on Goodreads, have become prevalent for content sharing on online platforms. Item list continuation is proposed to model the overall trend of a list and predict subsequent items. Recently, Transformer-based models have shown promise in comprehending contextual information and capturing item relationships in a list. However, deploying them in real-time industrial applications is challenging, mainly because the autoregressive generation mechanism used in them is time-consuming. In this paper, we propose a novel fast non-autoregressive sequence generation model, namely FANS, to enhance inference efficiency and quality for item list continuation. First, we use a non-autoregressive generation mechanism to decode next $K$ items simultaneously instead of one by one in existing models. Then, we design a two-stage classifier to replace the vanilla classifier used in current transformer-based models to further reduce the decoding time. Moreover, to improve the quality of non-autoregressive generation, we employ a curriculum learning strategy to optimize training. Experimental results on four real-world item list continuation datasets including Zhihu, Spotify, AotM, and Goodreads show that our FANS model can significantly improve inference efficiency (up to 8.7x) while achieving competitive or better generation quality for item list continuation compared with the state-of-the-art autoregressive models. We also validate the efficiency of FANS in an industrial setting. Our source code and data will be available at MindSpore/models and Github.
翻译:在线平台上,用户编辑的商品列表,例如YouTube上的基于视频的播放列表和Goodreads上的基于书籍的列表,已经变得非常普遍。商品列表续写是为了建模列表的整体趋势和预测后续商品。最近,基于Transformer的模型已经展现出了对上下文信息的理解和对列表中商品关系的捕捉的潜力。然而,将它们部署到实时工业应用中仍然具有挑战性,主要是因为它们中使用的自回归生成机制时间消耗较大。在本文中,我们提出了一种新颖的快速非自回归序列生成模型FANS,以增强商品列表续写的推理效率和质量。首先,我们使用非自回归生成机制同时解码下一个$K$个商品,而不是如现有模型那样一个一个地解码。然后,我们设计了一个两阶段分类器来替代当前Transformer-based模型中使用的普通分类器,以进一步减少解码时间。此外,为了提高非自回归生成的质量,我们采用课程学习策略来优化训练。对四个真实的商品列表续写数据集进行的实验结果,包括Zhihu、Spotify、AotM和Goodreads,表明我们的FANS模型可以显著提高推理效率(高达8.7倍),同时与现有最先进的自回归模型相比,实现了竞争力或更好的商品列表生成质量。我们还验证了FANS在工业设置中的效率。我们的源代码和数据将在MindSpore/Models和Github上提供。