The concept of image similarity is ambiguous, meaning that images that are considered similar in one context might not be in another. This ambiguity motivates the creation of metrics for specific contexts. This work explores the ability of the successful deep perceptual similarity (DPS) metrics to adapt to a given context. Recently, DPS metrics have emerged using the deep features of neural networks for comparing images. These metrics have been successful on datasets that leverage the average human perception in limited settings. But the question remains if they could be adapted to specific contexts of similarity. No single metric can suit all definitions of similarity and previous metrics have been rule-based which are labor intensive to rewrite for new contexts. DPS metrics, on the other hand, use neural networks which might be retrained for each context. However, retraining networks takes resources and might ruin performance on previous tasks. This work examines the adaptability of DPS metrics by training positive scalars for the deep features of pretrained CNNs to correctly measure similarity for different contexts. Evaluation is performed on contexts defined by randomly ordering six image distortions (e.g. rotation) by which should be considered more similar when applied to an image. This also gives insight into whether the features in the CNN is enough to discern different distortions without retraining. Finally, the trained metrics are evaluated on a perceptual similarity dataset to evaluate if adapting to an ordering affects their performance on established scenarios. The findings show that DPS metrics can be adapted with high performance. While the adapted metrics have difficulties with the same contexts as baselines, performance is improved in 99% of cases. Finally, it is shown that the adaption is not significantly detrimental to prior performance on perceptual similarity.


翻译:图像相似性的概念是模糊的,这意味着在一个环境中被视为相似的图像在另一个环境中可能不是相似的。这种模糊性促使我们为特定环境创建指标。本研究探讨了成功的深度感知相似性(DPS)指标适应给定环境的能力。最近,DPS指标应用神经网络的深层特征比较图像。这些指标已经在利用人类感知的数据集中获得了成功。但是问题在于,它们是否能够适应特定的相似性环境。没有单一的指标可以适用于所有相似性定义,以前的指标都是基于规则的,需要大量的工作才能为新环境重写。DPS指标则使用可以根据需要重新训练的神经网络。但是,重新训练神经网络需要资源,并可能破坏以前的任务表现。本文通过训练预训练CNN的深层特征的正标量,以正确测量不同环境下的相似性,来研究DPS指标的可适应性。评估是在将六种图像失真(例如旋转)随机排列的上下文中定义的上下文中进行的,该上下文应考虑何种失真更相似。这也使了解特征是否足以在不重新训练的情况下区分不同的失真。最后,对训练过的指标进行了评估,以评估适应排序是否影响其在已建立情景中的性能。结果表明,DPS指标能够高效地适应性。虽然适应的指标在与基线相同的情境下存在困难,但在99%的情况下性能得到了提升。最后,证明了适应性对感知相似性的先前性能没有显着不利影响。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
15+阅读 · 2021年7月14日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年5月20日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员