Representation learning is a fundamental task in machine learning. It consists of learning the features of data items automatically, typically using a deep neural network (DNN), instead of selecting hand-engineered features that typically have worse performance. Graph data requires specific algorithms for representation learning such as DeepWalk, node2vec, and GraphSAGE. These algorithms first sample the input graph and then train a DNN based on the samples. It is common to use GPUs for training, but graph sampling on GPUs is challenging. Sampling is an embarrassingly parallel task since each sample can be generated independently. However, the irregularity of graphs makes it hard to use GPU resources effectively. Existing graph processing, mining, and representation learning systems do not effectively parallelize sampling and this negatively impacts the end-to-end performance of representation learning. In this paper, we present NextDoor, the first system specifically designed to perform graph sampling on GPUs. NextDoor introduces a high-level API based on a novel paradigm for parallel graph sampling called transit-parallelism. We implement several graph sampling applications, and show that NextDoor runs them orders of magnitude faster than existing systems
翻译:代表学习是机器学习中的一项基本任务。 它包括自动学习数据项目的特征, 通常使用深神经网络( DNN), 而不是选择通常性能较差的手工设计特征。 图表数据需要特定的代表学习算法, 如 DeepWalk、 node2vec 和 GraphSAGE。 这些算法首先对输入图进行取样, 然后根据样本对 DNN 进行培训。 通常使用 GPU 进行培训, 但 GPU 上的图形取样具有挑战性。 取样是一个令人尴尬的平行任务, 因为每个样本都可以独立生成。 然而, 图表的不规则性使得它很难有效地使用 GPU 资源。 现有的图形处理、 和演示学习系统并不有效地平行进行取样, 这会对演示学习的端到端的绩效产生消极影响 。 在本文中, 我们介绍第一个专门设计用于在 GPUPS 上进行图形取样的系统NextDoor 。 下一个Door 引入一个高级的API, 是基于一个叫人的新型图形取样模式, 即中转参数 。 我们应用了几个图表取样程序,, 并显示 NextDoor 系统的速度比现有系统要快。