Fact verification models have enjoyed a fast advancement in the last two years with the development of pre-trained language models like BERT and the release of large scale datasets such as FEVER. However, the challenging problem of fake news detection has not benefited from the improvement of fact verification models, which is closely related to fake news detection. In this paper, we propose a simple yet effective approach to connect the dots between fact verification and fake news detection. Our approach first employs a text summarization model pre-trained on news corpora to summarize the long news article into a short claim. Then we use a fact verification model pre-trained on the FEVER dataset to detect whether the input news article is real or fake. Our approach makes use of the recent success of fact verification models and enables zero-shot fake news detection, alleviating the need of large-scale training data to train fake news detection models. Experimental results on FakenewsNet, a benchmark dataset for fake news detection, demonstrate the effectiveness of our proposed approach.
翻译:过去两年来,事实核查模型在开发诸如BERT等经过预先训练的语言模型和释放诸如FEWL等大型数据集方面,取得了快速进展。然而,假新闻探测的棘手问题并没有从改进与假新闻探测密切相关的事实核查模型中受益。在本文中,我们提出了一个简单而有效的方法,将事实核查与假新闻探测之间的点联系起来。我们的方法首先在新闻公司公司上预先训练的文本汇总模型中将长篇新闻文章归纳成一个简短的主张。然后,我们利用在FEWER数据集上预先训练的事实核查模型来检测输入的新闻文章是真实还是假的。我们的方法利用了最近的事实核查模型的成功,使零发假新闻探测成为可能,减轻了大规模培训数据来训练假新闻探测模型的需要。 FakenewsNet(一个用于假新闻探测的基准数据集)的实验结果,显示了我们拟议方法的有效性。