A variety of strategies have been proposed for overcoming local optimality in metaheuristic search. This paper examines characteristics of moves that can be exploited to make good decisions about steps that lead away from a local optimum and then lead toward a new local optimum. We introduce strategies to identify and take advantage of useful features of solution history with an adaptive memory metaheuristic, to provide rules for selecting moves that offer promise for discovering improved local optima. Our approach uses a new type of adaptive memory based on a construction called exponential extrapolation. The memory operates by means of threshold inequalities that ensure selected moves will not lead to a specified number of most recently encountered local optima. Associated thresholds are embodied in choice rule strategies that further exploit the exponential extrapolation concept. Together these produce a threshold based Alternating Ascent (AA) algorithm that opens a variety of research possibilities for exploration.
翻译:为克服当地计量经济学搜索的最佳性,提出了各种战略,以克服当地计量经济学搜索的最佳性。本文件审视了各种运动的特点,这些运动可以用来对从当地最佳化走向新的当地最佳化的步骤作出正确的决定,然后向新的当地最佳化迈进。我们引入了各种战略,以确定和利用解决方案历史的有用特点,并采用适应性记忆计量经济学,为选择那些有可能发现改进后的当地自选的移动提供规则。我们的方法使用一种基于所谓指数外推法的适应性记忆新类型。记忆通过临界值不平等运作,确保选定的移动不会导致最近遇到的本地自选。相关的临界值体现在进一步利用指数外推法概念的选择规则战略中。这些战略共同产生了一种基于门槛的阿森(A)调和算法,为勘探提供各种研究可能性。