Active Search and Tracking for search and rescue missions or collaborative mobile robotics relies on the actuation of a sensing platform to detect and localize a target. In this paper we focus on visually detecting a radio-emitting target with an aerial robot equipped with a radio receiver and a camera. Visual-based tracking provides high accuracy, but the directionality of the sensing domain often requires long search times before detecting the target. Conversely,radio signals have larger coverage, but lower tracking accuracy. Thus, we design a Recursive Bayesian Estimation scheme that uses camera observations to refine radio measurements. To regulate the camera pose, we design an optimal controller whose cost function is built upon a probabilistic map. Theoretical results support the proposed algorithm, while numerical analyses show higher robustness and efficiency with respect to visual and radio-only baselines.
翻译:主动搜索和跟踪搜索和救援任务或协作性移动机器人,依靠感测平台的启动发现和定位目标。在本文中,我们侧重于通过配备无线电接收器和相机的空中机器人对射电发射目标进行目视探测。视觉跟踪提供很高的准确性,但感测域的方向性往往需要很长的搜索时间才能探测目标。相反,辐射信号的覆盖范围更大,但跟踪精确度较低。因此,我们设计了一个利用相机观测来改进无线电测量的Recurisive Bayesian估计方案。为了调节摄像头的外观,我们设计了一个最佳控制器,其成本功能建立在概率地图上。理论结果支持了拟议的算法,而数字分析则显示在视觉和无线电基线方面更加稳健,效率更高。