Macroeconomists using large datasets often face the choice of working with either a large Vector Autoregression (VAR) or a factor model. In this paper, we develop methods for combining the two using a subspace shrinkage prior. Subspace priors shrink towards a class of functions rather than directly forcing the parameters of a model towards some pre-specified location. We develop a conjugate VAR prior which shrinks towards the subspace which is defined by a factor model. Our approach allows for estimating the strength of the shrinkage as well as the number of factors. After establishing the theoretical properties of our proposed prior, we carry out simulations and apply it to US macroeconomic data. Using simulations we show that our framework successfully detects the number of factors. In a forecasting exercise involving a large macroeconomic data set we find that combining VARs with factor models using our prior can lead to forecast improvements.
翻译:使用大型数据集的宏conomists 使用大型矢量自动递减(VAR) 或系数模型,往往面临选择使用大型矢量自动递减(VAR) 或系数模型。 在本文中,我们开发了将两者结合的方法,使用子空间缩缩缩前。 子空间前向一个功能类别缩进, 而不是直接将模型参数强制到某个预先指定的位置。 我们开发了一个组合式VAR 之前, 向按系数模型定义的子空间缩缩进。 我们的方法可以估计缩缩的强度和因素的数量。 在确定我们之前提议的理论属性后, 我们进行模拟, 并将其应用到美国的宏观经济数据中。 我们使用模拟来显示我们的框架成功地检测了各种因素的数量。 在涉及大型宏观经济数据集的预测活动中, 我们发现将VAR与要素模型结合使用我们先前的参数模型可以导致预测改进。