This paper describes a revision of the classic Lazy Probabilistic Roadmaps algorithm (Lazy PRM), that results from pairing PRM and a novel Branch-and-Cut (BC) algorithm. Cuts are dynamically generated constraints that are imposed on minimum cost paths over the geometric graphs selected by PRM. Cuts eliminate paths that cannot be mapped into smooth plans that satisfy suitably defined kinematic constraints. We generate candidate smooth plans by fitting splines to vertices in minimum-cost path. Plans are validated with a recently proposed algorithm that maps them into finite traces, without need to choose a fixed discretization step. Trace elements exactly describe when plans cross constraint boundaries modulo arithmetic precision. We evaluate several planners using our methods over the recently proposed BARN benchmark, and we report evidence of the scalability of our approach.
翻译:本文描述对经典的Lazy 概率性路线图算法(Lazy PRM)的修订,该算法源自于配对 PRM 和一个全新的分支和Cut(BC) 算法。 剪切是动态产生的限制, 是在PRM 选定的几何图上的最低成本路径上强加的。 剪切消除无法被映入满足适当定义的运动性约束的平滑计划的路径。 我们通过在最低成本路径上安装脊椎, 产生候选人的平稳计划。 计划通过最近提出的算法得到验证, 该算法将其绘制成有限的痕迹, 不需要选择固定的离散性步骤。 追踪要素在计划跨约束边界时精确描述 。 我们用我们的方法对最近提出的巴伦基准进行评估, 并报告我们方法的可扩展性证据。