The relative hull of a code $C_1$ with respect to another code $C_2$ is the intersection $C_1\cap C_2^\perp$. We prove that the dimension of the relative hull can always be repeatedly reduced by one by replacing any of the two codes with an equivalent one, down to a specified lower bound. We show how to construct an equivalent code $C_1^\prime$ of $C_1$ (or $C_2^\prime$ of $C_2$) such that the dimension of $C_1^\prime \cap C_2^{\perp}$ (or $C_1 \cap C_2^{\prime\perp}$) is one less than the dimension of $C_1\cap C_2^\perp$. Given codes $C_1$ and $C_2$, we provide a method to specify a code equivalent to $C_2$ which gives a relative hull of any specified dimension, between the difference in dimensions of $C_1$ and $C_2$ and the dimension of the relative hull of $C_1$ with respect to $C_2$. These results apply to hulls taken with respect to the $e$-Galois inner product, which has as special cases both the Euclidean and Hermitian inner products. We also give conditions under which the dimension of the relative hull can be increased by one via equivalent codes. We study the consequences of the relative hull properties on quantum codes constructed via CSS construction. Finally, we use families of decreasing monomial-Cartesian codes to generate pure or impure quantum codes.
翻译:代号$C$1, 相对另一代号$C$1, 相对1美元, 相对C$2美元, 交叉号为$C_1\cap C_2\cap C_2 perp$。 我们证明相对船体的尺寸总是可以反复减少1美元, 代号为1美元C_1美元, 相对于另一个代号为2美元C美元, 相对体值为1美元C$2, 相对体值为1美元C_1\cap C_2\p%美元。 我们证明, 相对体体积的尺寸, 相对体积的尺寸, 相对体积为1美元C+c_cap c_ prim\p$ 美元, 相对体积小于1美元C1\ccap C_ perp$。 根据代号C_1, 美元和2美元CF$2, 我们提供了一种方法, 代号等值为2美元, 相对体积值为1美元, 等值为2美元, 等值为1, 等值为1美元, 等值的体体积值值为1, 等值为1, 相对体积值的值值为1, 相对体积值值值值值值值值为1, 内值为1, 内值值为1美元。