The underwater acoustic channel is one of the most challenging communication channels. Due to periodical tidal and daily climatic variation, underwater noise is periodically fluctuating, which result in the periodical changing of acoustic channel quality in long-term. Also, time-variant channel quality leads to routing failure. Routing protocols with acoustic channel estimation, namely underwater channel-aware routing protocols are recently proposed to maintain the routing performance. However, channel estimation algorithms for these routing protocols are mostly linear and rarely consider periodicity of acoustic channels. In this paper, we introduce acoustic channel estimation based on nearest neighbor regression for underwater acoustic networks. We extend nearest neighbor regression for SNR (Signal-to-Noise Ratio) time series prediction, providing an outstanding prediction accuracy for intricately periodical and fluctuating received SNR time series. Moreover, we propose a quick search algorithm and use statistical storage compression to optimize the time and space complexity of the algorithm. In contrast with linear methods, this algorithm significantly improves channel prediction accuracy (over three times at most) on both simulation and sea trial data sets. With this channel estimation method, we then propose a Depth-Based Channel-Aware Routing protocol (DBCAR). Taking advantage of depth-greedy forwarding and channel-aware reliable communication, DBCAR has an outstanding network performance on packet delivery ratio, average energy consumption and average transmission delay which is validated through extensive simulations.


翻译:水下声频频道是最具挑战性的通信渠道之一。 由于周期性潮汐和日常气候变异,水下噪音定期波动,导致声频频道质量长期周期性变化。此外,时间变化频道质量导致航线故障。声频频道估计流程协议,即水下频道-有线线路路程协议最近提议保持航道性能。然而,这些航道协议的频道估计算法大多是线性,很少考虑声频频道的周期性能。在本文中,我们根据近邻回归情况对水下声频网络进行声频频道估计。我们延长SNR(信号对噪音比率)时间序列的周期性周期性周期性周期性周期性周期性周期性周期性周期性周期性周期性周期性周期性周期性周期性周期性周期性周期性周期性周期性预测。此外,我们提议快速搜索算法并使用统计储存压缩来优化航道运行速度和空间复杂性。与线性方法不同,这种算法大大提高了模拟和海上试验数据集的频道预测准确性能(最多为三次 ) 。我们随后建议对SQ-B-CR-CAR系统平均传输流流流流流流流流流流流流流路路路路路路路路路路路路段平均传输速度的进度传输优势进行顺利传输协议。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员