In the present work we tackle the problem of finding the optimal price tariff to be set by a risk-averse electric retailer participating in the pool and whose customers are price-sensitive. We assume that the retailer has access to a sufficiently large smart-meter dataset from which it can statistically characterize the relationship between the tariff price and the demand load of its clients. Three different models are analyzed to predict the aggregated load as a function of the electricity prices and other parameters, as humidity or temperature. In particular, we train linear regression (predictive) models to forecast the resulting demand load as a function of the retail price. Then we will insert this model in a quadratic optimization problem which evaluates the optimal price to be offered. This optimization problem accounts for different sources of uncertainty including consumer's response and renewable source availability, and relies on a stochastic and risk-averse formulation. Moreover, we consider both standard forward based contracts and the recently introduced power purchase agreement contracts as risk-hedging tools for the retailer. The results are promising as profits are found for the retailer with highly competitive prices and some possible improvements are shown if a better dataset could be produced. A realistic case study and multiple sensitivity analyses have been performed to characterize the risk-aversion behavior of the retailer considering price-sensitive consumers. It has been assumed that the energy procurement of the retailer can be satisfied from the pool and different types of contracts. The obtained results reveal that the risk-aversion degree of the retailer strongly influences contracting decisions, whereas the price sensitiveness of consumers has a higher impact on the selling price offered.


翻译:在目前的工作中,我们解决了找到最佳价格关税的问题,该关税将由参加该批的反风险电子零售商制定,其客户对价格敏感。我们假定零售商可以获得足够大、智能的数据集,从统计上可以确定关税价格与客户需求负荷之间的关系。我们分析了三个不同的模型,以预测电力价格和其他参数的累积性功能,即湿度或温度。我们特别将线性回归(预知性)模型作为零售价格的函数来预测由此产生的需求负荷。然后我们将将这一模型插入一个夸大的最佳优化度问题中,以评价最佳价格。这种优化问题说明了不同不确定性的来源,包括消费者的反应和可再生来源的供应,并依赖一种随机性和风险反风险的配方。此外,我们认为标准前期合同和最近推出的电力购买协议是零售商的风险规避工具。如果零售商发现高竞争性价格的利润,而且如果对零售商的更高合同影响有更强烈的改进度,我们将将其插入这一模型。这种优化的问题说明不同的不确定性来源,包括消费者的反应和可再生来源,并依赖于一种现实的零售风险分析。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
inpluslab
8+阅读 · 2019年10月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Optimal Policies Tend to Seek Power
Arxiv
0+阅读 · 2021年12月3日
User-click Modelling for Predicting Purchase Intent
Arxiv
0+阅读 · 2021年12月3日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
已删除
inpluslab
8+阅读 · 2019年10月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员