The main task we consider is portfolio construction in a speculative market, a fundamental problem in modern finance. While various empirical works now exist to explore deep learning in finance, the theory side is almost non-existent. In this work, we focus on developing a theoretical framework for understanding the use of data augmentation for deep-learning-based approaches to quantitative finance. The proposed theory clarifies the role and necessity of data augmentation for finance; moreover, our theory motivates a simple algorithm of injecting a random noise of strength $\sqrt{|r_{t-1}|}$ to the observed return $r_{t}$. This algorithm is shown to work well in practice.
翻译:我们所考虑的主要任务是在投机市场上进行证券组合建设,这是现代金融的一个根本问题。虽然现在存在各种经验性工作来探索金融的深层学习,但理论方面几乎不存在。在这项工作中,我们侧重于开发一个理论框架,以了解如何利用数据增加来采用基于深学习的量化融资方法。拟议的理论澄清了数据增加对金融的作用和必要性;此外,我们的理论促使一种简单的算法,即向观察到的回报美元注入一种随机的强度噪音$\sqrt ⁇ r ⁇ t-1 ⁇ $。这一算法在实践中证明行之有效。