Knowledge is central to human and scientific developments. Natural Language Processing (NLP) allows automated analysis and creation of knowledge. Data is a crucial NLP and machine learning ingredient. The scarcity of open datasets is a well-known problem in machine and deep learning research. This is very much the case for textual NLP datasets in English and other major world languages. For the Bangla language, the situation is even more challenging and the number of large datasets for NLP research is practically nil. We hereby present Potrika, a large single-label Bangla news article textual dataset curated for NLP research from six popular online news portals in Bangladesh (Jugantor, Jaijaidin, Ittefaq, Kaler Kontho, Inqilab, and Somoyer Alo) for the period 2014-2020. The articles are classified into eight distinct categories (National, Sports, International, Entertainment, Economy, Education, Politics, and Science \& Technology) providing five attributes (News Article, Category, Headline, Publication Date, and Newspaper Source). The raw dataset contains 185.51 million words and 12.57 million sentences contained in 664,880 news articles. Moreover, using NLP augmentation techniques, we create from the raw (unbalanced) dataset another (balanced) dataset comprising 320,000 news articles with 40,000 articles in each of the eight news categories. Potrika contains both the datasets (raw and balanced) to suit a wide range of NLP research. By far, to the best of our knowledge, Potrika is the largest and the most extensive dataset for news classification.
翻译:自然语言处理(NLP)允许自动分析和创造知识。数据是一个关键的NLP和机器学习要素。开放数据集的稀缺是机器和深层学习研究中众所周知的一个问题。英语和其他主要世界语言的文本NLP数据集正是如此。孟加拉语的形势甚至更具挑战性,国家语言研究的大型数据集数量几乎为零。我们在此介绍Potrika,这是孟加拉国六个流行的在线新闻门户(Jugantor、Jaijaidin、Ittefaq、Kaler Kontho、Inqilab和Somoyer Alo)为NLP研究制作的大型单标签文章文本数据集。2014-2020年期间,对英语和其他主要世界语言文本的NLP数据集非常普遍。关于孟加拉语的文章分为8个不同类别(国家、体育、国际、娱乐、经济、教育、政治和科学等科技)提供了五种最均衡的属性(News、Celectine、头条、出版日期和报纸来源),原始数据包含185100万种数据,而原始数据则包括我们新闻的1850万种。