Several safety-critical applications such as self-navigation, health care, and industrial control systems use embedded systems as their core. Recent advancements in Neural Networks (NNs) in approximating complex functions make them well-suited for these domains. However, the compute-intensive nature of NNs limits their deployment and training in embedded systems with limited computation and storage capacities. Moreover, the adversarial vulnerability of NNs challenges their use in safety-critical scenarios. Hence, developing sparse models having robustness guarantees while leveraging fewer resources during training is critical in expanding NNs' use in safety-critical and resource-constrained embedding system settings. This paper presents 'VeriSparse'-- a framework to search verified locally robust sparse networks starting from a random sparse initialization (i.e., scratch). VeriSparse obtains sparse NNs exhibiting similar or higher verified local robustness, requiring one-third of the training time compared to the state-of-the-art approaches. Furthermore, VeriSparse performs both structured and unstructured sparsification, enabling storage, computing-resource, and computation time reduction during inference generation. Thus, it facilitates the resource-constraint embedding platforms to leverage verified robust NN models, expanding their scope to safety-critical, real-time, and edge applications. We exhaustively investigated VeriSparse's efficacy and generalizability by evaluating various benchmark and application-specific datasets across several model architectures.


翻译:安全关键的应用领域,例如自主导航、医疗保健和工业控制系统,以嵌入式系统为核心。近期神经网络在逼近复杂函数方面的进展使其非常适合这些领域。然而,神经网络的计算密集性限制了它们在计算和存储容量受限的嵌入式系统中的部署和训练。此外,神经网络的敌对性漏洞挑战了它们在安全关键场景中的使用。因此,在扩展神经网络在资源受限的嵌入式系统设置中的使用范围方面,开发具有鲁棒性保证且在训练期间利用较少资源的稀疏模型至关重要。本文提出了VeriSparse ⁠,这是一个框架,从随机的稀疏初始值(即从零开始)开始搜索具有验证局部鲁棒性的稀疏神经网络。与最先进的方法相比,VeriSparse获得了展现相似或更高局部鲁棒性的稀疏神经网络,训练时间只需要其三分之一。此外,VeriSparse执行结构化和非结构化的稀疏化,使推理生成期间的存储、计算资源和计算时间减少,这有利于资源限制的嵌入式平台利用验证的鲁棒性神经网络模型,并将其应用范围扩展到安全关键、实时和边缘应用程序。因此,我们通过评估各种基准数据集和特定应用数据集在多个模型体系结构上详尽地调查并验证了VeriSparse的功效和通用性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年6月30日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
20+阅读 · 2021年2月28日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员