We describe an improved statistical downscaling method for Earth science applications using multivariate Basis Graphical Lasso (BGL). We demonstrate our method using a case study of sea surface temperature (SST) projections from CMIP6 Earth system models, which has direct applications for studies of multi-decadal projections of coral reef bleaching. We find that the BGL downscaling method is computationally tractable for large data sets, and that mean squared predictive error is roughly 8% lower than the current state-of-the-art interpolation-based statistical downscaling method. Finally, unlike most ofthe currently available methods, BGL downscaling produces uncertainty estimates. Our novel method can be applied to any model output variable for which corresponding higher-resolution observational data is available.
翻译:我们用多变基础图形拉索(BGL)描述改进了的地球科学应用的统计缩小尺度方法。我们用CMIP6地球系统模型的海面温度预测案例研究(SST)来展示我们的方法,该模型直接应用研究珊瑚礁漂白的多十年预测。我们发现,对于大型数据集,BGL缩小尺度方法可以计算,平均正方位预测错误比目前最先进的基于内推的统计缩小尺度方法低约8%。最后,与大多数现有方法不同的是,BGL缩小尺度产生不确定性估计值。我们的新方法可以用于任何模型输出变量,可以提供相应的更高分辨率的观测数据。