With the increasingly strengthened data privacy act and the difficult data centralization, Federated Learning (FL) has become an effective solution to collaboratively train the model while preserving each client's privacy. FedAvg is a standard aggregation algorithm that makes the proportion of dataset size of each client as aggregation weight. However, it can't deal with non-independent and identically distributed (non-i.i.d) data well because of its fixed aggregation weights and the neglect of data distribution. In this paper, we propose an aggregation strategy that can effectively deal with non-i.i.d dataset, namely FedGraph, which can adjust the aggregation weights adaptively according to the training condition of local models in whole training process. The FedGraph takes three factors into account from coarse to fine: the proportion of each local dataset size, the topology factor of model graphs, and the model weights. We calculate the gravitational force between local models by transforming the local models into topology graphs. The FedGraph can explore the internal correlation between local models better through the weighted combination of the proportion each local dataset, topology structure, and model weights. The proposed FedGraph has been applied to the MICCAI Federated Tumor Segmentation Challenge 2021 (FeTS) datasets, and the validation results show that our method surpasses the previous state-of-the-art by 2.76 mean Dice Similarity Score. The source code will be available at Github.


翻译:随着数据隐私法的日益强化和数据集中化的困难程度,FedAvg(FedAvg)已成为合作培训模型并同时保护每个客户隐私的有效解决办法。FedAvg是一个标准汇总算法,它将每个客户的数据集大小比例作为总加权数。然而,它无法很好地处理非独立和同样分布的数据(非一.一.d)数据(非一.d)数据),因为其固定的聚合权重和对数据分布的忽视。在本文中,我们提出了一个可以有效处理非i.i.d数据集(即FedGraph)的汇总战略,即FedGraph(FedGraph),它可以在整个培训过程中根据当地模型的培训条件调整汇总权重。FedGraph将三个因素从粗略到细考虑:每个本地数据集大小的比例、模型图示的表因数系数和模型重量。我们通过将地方模型转换成表图表的图表图表。FedGraphrph可以通过对每个本地数据比例的加权组合来更好地探讨地方模型之间的内部关联关系。在FedFinFSreal的数值结构结构结构结构结构中,根据以前的模型和图表结构显示了我们应用的数值结构的模型的模型和图表结构显示。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
60+阅读 · 2020年3月19日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员