In this paper, we present a novel approach for local exceptionality detection on time series data. This method provides the ability to discover interpretable patterns in the data, which can be used to understand and predict the progression of a time series. This being an exploratory approach, the results can be used to generate hypotheses about the relationships between the variables describing a specific process and its dynamics. We detail our approach in a concrete instantiation and exemplary implementation, specifically in the field of teamwork research. Using a real-world dataset of team interactions we include results from an example data analytics application of our proposed approach, showcase novel analysis options, and discuss possible implications of the results from the perspective of teamwork research.
翻译:在本文中,我们介绍了对时间序列数据进行当地特殊性探测的新办法。这种方法提供了在数据中发现可解释模式的能力,可用于理解和预测时间序列的进展。这是一种探索性办法,其结果可用于对描述具体过程及其动态的变量之间的关系提出假设。我们以具体的即时和模范方式详细介绍了我们的方法,特别是在团队协作研究领域。我们使用一个真实世界的团队互动数据集,包括从我们拟议方法的范例数据分析应用中得出的结果,展示新的分析选项,并从团队合作研究的角度讨论结果可能产生的影响。