In project scheduling under processing times uncertainty, the Anchor-Robust Project Scheduling Problem is to find a baseline schedule of bounded makespan and a max-weight subset of jobs whose starting times are guaranteed. The problem was proven NP-hard even for budgeted uncertainty. In the present work we design mixed-integer programming (MIP) formulations that are valid for a variety of uncertainty sets encompassing budgeted uncertainty. A new dominance among solutions is proposed, resulting into an MIP formulation. We further study the combinatorial structure of the problem. Non-trivial polynomial cases under budgeted uncertainty are exhibited, where the dominance-based formulation yields a polyhedral characterization of integer solutions. In more general cases, the dominance-based formulation is shown to be tighter than all previously known formulations. In numerical experiments we investigate how the formulation performs on instances around the polynomial cases, for both budgeted uncertainty sets and more elaborate uncertainty sets involving several budgets.
翻译:在项目时间安排过程中,处理时间不确定,Anchor-Robust项目规划问题是要找到一个捆绑的混合工作基准时间表,以及保证起始时间的一组最大重量的工作。事实证明,即使预算的不确定性,这个问题也很难解决。在目前的工作中,我们设计了适用于各种不确定性的混合整数编程(MIP)配方,这些配方包括预算的不确定性。在各种不确定性组别中提出了新的解决办法的主导地位,从而形成了一个MIP配方。我们进一步研究了这一问题的组合结构。在预算的不确定性组别下,出现了非三重性多价组别的情况,在预算的不确定性组别下,基于支配地位的配方产生了对整数解决办法的多重特征特征。在更一般情况下,基于支配地位的配方比以往所有的配方都更加严格。在数字实验中,我们调查该配方是如何在多数值组别案例上表现的,既包括预算的不确定性组别,也包括涉及若干预算的更复杂的不确定性组别。