A general nonlinear $1$st-order consensus-based solution for distributed constrained convex optimization is proposed with network resource allocation applications. The solution is used to optimize continuously-differentiable strictly convex cost functions over weakly-connected undirected networks, while it is anytime feasible and models various nonlinearities to account for imperfections and constraints on the (physical model of) agents in terms of limited actuation capabilities, e.g., quantization and saturation. Due to such inherent nonlinearities, the existing linear solutions considering ideal agent models may not necessarily converge with guaranteed optimality and anytime feasibility. Some applications also impose specific nonlinearities, e.g., convergence in fixed/finite-time or sign-based robust disturbance-tolerant dynamics. Our proposed distributed protocol generalizes such nonlinear models. Putting convex set analysis together with nonsmooth Lyapunov analysis, we prove convergence, (i) regardless of the particular type of nonlinearity, and (ii) with weak network-connectivity requirements (uniform-connectivity).


翻译:与网络资源分配应用程序一道,建议采用一般非线性1美元级的协商一致解决方案,用于分配限制的软盘优化;该解决方案用于优化对连接不畅的无方向网络的连续、严格分解的成本功能,同时在任何时候都可行,并模拟各种非线性非线性模型,以说明作用能力有限的(物理模型)物剂的不完善和制约,例如四分制和饱和;由于这种固有的非线性,考虑理想剂模型的现有线性解决方案不一定与保证的最佳性和随时可行性相融合;有些应用程序还强加了具体的非线性,例如固定/固定时间或基于信号的稳健健的扰动。我们拟议的分布式协议概括了这种非线性模型。将配置分析与非线性莱普努诺夫分析结合起来,我们证明会趋于一致;(一) 不论非线性的具体类型,以及(二) 网络连接性要求薄弱(独立连通性)。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年1月25日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员