Accurate prediction of water temperature in streams is critical for monitoring and understanding biogeochemical and ecological processes in streams. Stream temperature is affected by weather patterns (such as solar radiation) and water flowing through the stream network. Additionally, stream temperature can be substantially affected by water releases from man-made reservoirs to downstream segments. In this paper, we propose a heterogeneous recurrent graph model to represent these interacting processes that underlie stream-reservoir networks and improve the prediction of water temperature in all river segments within a network. Because reservoir release data may be unavailable for certain reservoirs, we further develop a data assimilation mechanism to adjust the deep learning model states to correct for the prediction bias caused by reservoir releases. A well-trained temporal modeling component is needed in order to use adjusted states to improve future predictions. Hence, we also introduce a simulation-based pre-training strategy to enhance the model training. Our evaluation for the Delaware River Basin has demonstrated the superiority of our proposed method over multiple existing methods. We have extensively studied the effect of the data assimilation mechanism under different scenarios. Moreover, we show that the proposed method using the pre-training strategy can still produce good predictions even with limited training data.


翻译:对溪流中水温的准确预测对于监测和理解溪流的生物地球化学和生态过程至关重要。溪流温度受到天气模式(如太阳辐射)和流流网络水流的影响。此外,溪流温度还可能受到人为水库向下游部分释放水的影响。在本文件中,我们提出了一个混合的经常性图表模型,以代表这些相互作用的过程,这些过程是河流-储水网络的基础,并改进网络内所有河段水温的预测。由于某些水库可能得不到储水量释放数据,我们进一步开发了一个数据吸收机制,以调整深层学习模式状态,纠正水库释放造成的预测偏差。需要经过良好培训的时间模型组件,以便利用调整后的国家改进未来的预测。因此,我们还推出一个基于模拟的培训前战略,以加强模型培训。我们对德拉瓦雷河流域的评估表明,我们所提议的方法优于多种现有方法。我们广泛研究了不同情景下的数据同化机制的影响。此外,我们还表明,使用培训前战略的拟议方法仍然可以产生良好的预测,即使数据有限。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年2月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
已删除
将门创投
3+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
14+阅读 · 2021年7月20日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年2月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
已删除
将门创投
3+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员